Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 471, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811870

RESUMEN

BACKGROUND: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function. These sensitivities highlight the need for precise management of P levels in cultivation practices. The use of the beneficial element silicon (Si) has shown promising results under nutritional stress; nevertheless, comprehensive studies on its effects on Eucalyptus spp. seedlings are still emerging. To further elucidate the role of Si under varying P conditions, an experiment was conducted with clonal seedlings of a hybrid Eucalyptus spp. (Eucalyptus grandis × Eucalyptus urophylla, A207) in a soilless cultivation system. Seedlings were propagated using the minicutting method in vermiculite-filled tubes, followed by treatment with a nutrient solution at three P concentrations: a deficient dose (0.1 mM), an adequate dose (1.0 mM) and an excessive dose (10 mM), with and without the addition of Si (2mM). This study assessed P and Si concentration, nutritional efficiency, oxidative metabolism, photosynthetic parameters, and dry matter production. RESULTS: Si supply increased phenolic compounds production and reduced electrolyte leakage in seedlings provided with 0.1 mM of P. On the other hand, Si favored quantum efficiency of photosystem II as well as chlorophyll a content in seedlings supplemented with 10 mM of P. In general, Si attenuates P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters in seedlings of Eucalyptus grandis × Eucalyptus urophylla. CONCLUSION: The results of this study indicate that Eucalyptus grandis × Eucalyptus urophylla seedlings are sensitive to P deficiency and toxicity and Si has shown a beneficial effect, attenuating P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters.


Asunto(s)
Eucalyptus , Fósforo , Fotosíntesis , Plantones , Silicio , Eucalyptus/efectos de los fármacos , Eucalyptus/fisiología , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Silicio/farmacología , Fósforo/metabolismo , Fósforo/deficiencia , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Clorofila/metabolismo , Estrés Oxidativo/efectos de los fármacos
2.
BMC Plant Biol ; 24(1): 280, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609857

RESUMEN

BACKGROUND: Orchids are grown without soil in many regions of the world, but there is a lack of studies to define the balanced and adequate nutrient solution for their cultivation, mainly in the vegetative growth phase. Therefore, this paper aims to evaluate the optimal concentration of the nutrient solution based on the proposal by Hoagland and Arnon (1950) in the vegetative growth phase capable of increasing the nutrient contents, growth, and dry matter production of Dendrobium Tubtim Siam and Phalaenopsis Taisuco Swan. In addition, this paper aims to estimate a new nutrient solution from the optimal nutrient contents in the dry matter of these orchid species to be used in the vegetative growth phase. RESULTS: Nutrient contents, growth, and dry matter production increased as the nutrient solution concentration increased up to an average concentration of 62 and 77% for D. Tubtim Siam and P. Taisuco Swan, respectively. We found that the Hoagland and Arnon solution presented a group of nutrients with concentrations above the requirement for P. Taisuco Swan (nitrogen, phosphor, calcium, and sulfur) and D. Tubtim Siam (phosphor, calcium, magnesium, and sulfur), while other nutrients in the solution did not meet the nutritional demand of these orchid species, inducing nutritional imbalance in the vegetative growth phase. CONCLUSION: We conclude that using a balanced nutrient solution created specifically for each orchid species in vegetative growth might favor their sustainable cultivation by optimizing the use of nutrients in the growing medium.


Asunto(s)
Anseriformes , Dendrobium , Animales , Calcio , Tailandia , Nutrientes , Azufre
3.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256753

RESUMEN

Cover crops can be used to accelerate the solubilization process of low-solubility fertilizers; thus, the aim of this study was to evaluate the potential of grasses in solubilizing potassium from phonolite rock powder. With a 2 × 5 factorial scheme, two doses of phonolite rock powder, equivalent to 0 and 8 t ha-1, were combined with four grass species (Urochloa ruziziensis, U. decumbens, U. humidicola, and Andropogon gayanus), besides a control treatment without any cover crop. The dry matter production of the aerial parts of the plants was evaluated at days 40 and 70 post-emergence, and then the concentration of potassium in the plants and the soil was evaluated (exchangeable, non-exchangeable, structural, and total potassium contents). In the soil, the phonolitic rock powder increased the exchangeable, non-exchangeable, structural, and total K contents, favoring the absorption of K and the production of the dry mass of the three Urochloa, but U. decumbens stood out because it promoted greater availability of K in the system compared to the cultivation of other plant species. This research proposes the inclusion of U. decumbens in production systems that receive phonolitic rock, constituting a sustainable strategy to improve its agronomic efficiency.

4.
BMC Plant Biol ; 23(1): 497, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37845606

RESUMEN

Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.


Asunto(s)
Panicum , Fósforo , Suelo , Lignina , Panicum/fisiología , Plantas
5.
Sci Rep ; 13(1): 16929, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805565

RESUMEN

Potassium (K) deficiency in maize plants damages the nutritional functions of K. However, few studies have investigated the influence of K on C:N:P stoichiometry, the nutritional efficiency of these nutrients, and whether the mitigating effect of Si in plants under stress could act on these nutritional mechanisms involved with C, N, and P to mitigate K deficiency. Therefore, this study aimed to evaluate the impact of K deficiency in the absence and presence of Si on N and P uptake, C:N:P stoichiometric homeostasis, nutritional efficiency, photosynthetic rate, and dry matter production of maize plants. The experiment was conducted under controlled conditions using a 2 × 2 factorial scheme comprising two K concentrations: potassium deficiency (7.82 mg L-1) and potassium sufficiency (234.59 mg L-1). These concentrations were combined with the absence (0.0 mg L-1) and presence of Si (56.17 mg L-1), arranged in randomized blocks with five replicates. Potassium deficiency decreased stoichiometric ratios (C:N and C:P) and the plant's C, N, and P accumulation. Furthermore, it decreased the use efficiency of these nutrients, net photosynthesis, and biomass of maize plants. The results showed that Si supply stood out in K-deficient maize plants by increasing the C, N, and P accumulation. Moreover, it decreased stoichiometric ratios (C:N, C:P, N:P, C:Si, N:Si, and P:Si) and increased the efficiencies of uptake, translocation, and use of nutrients, net photosynthesis, and dry matter production of maize plants. Therefore, the low nutritional efficiency of C, N, and P caused by K deficiency in maize plants can be alleviated with the supply of 56.17 mg L-1 of Si in the nutrient solution. It changes C:N:P stoichiometry and favors the use efficiency of these nutrients, which enhances the photosynthesis and sustainability of maize.


Asunto(s)
Hipopotasemia , Deficiencia de Potasio , Silicio/farmacología , Zea mays , Potasio
6.
BMC Plant Biol ; 23(1): 520, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37884892

RESUMEN

Studies of boron (B) and silicon (Si) synergy in cotton crops have shown promising results; however, the focus was on the foliar application of B and Si. Nonetheless, B is an element with little mobility in the plant and its best form of application is in the soil. Thus, the objective of this study was to evaluate the synergistic effect of soil applied B and foliar applied sSi on fiber quality and crop yield of cotton. For this purpose, a field experiment was carried out using cotton cultivar FM 985 GLTP. The soil's B in the experimental site is classified as low for cotton cultivation. The experiment was conducted in a randomized complete-block design, in a 3 × 2 factorial scheme, with three doses of B: 0.0 kg ha-1 (deficiency), 2.0 kg ha-1 (recommended dose), and 4.0 kg ha-1 (high dose) in the absence and presence (920 g L-1) of Si, with four replications. One week after the 4th application of Si, B and Si leaf content was determined. At boll opening, crop yield was estimated, and fiber quality analysis was realized. Boron deficiency reduced cotton yield, in 11 and 9%, compared to the application of 2 and 4 kg ha-1 of B, respectively. The presence of Si, however, increased plant yield in 5% in the treatments with 0 and 2 kg ha-1 of B, respectively. Cotton fiber length and elongation were not influenced by the B doses and Si presence. Fiber breaking strength was increased in 5% by the presence of Si and was not influenced by B deficiency. Micronaire was 8% smaller in the treatment with 0 kg ha-1 of B and 6% smaller in the absence of Si. Short fiber index was 4% greater in the plants of the treatment with 0 kg ha-1 of B. The results of this study reports that the complementation with Si via foliar application increases fiber quality by enhance breaking strength and micronaire. In conclusion, the interaction between soil-applied B and foliar-applied Si is beneficial for cotton cultivation, resulting in high cotton yield with better fiber quality.


Asunto(s)
Fibra de Algodón , Suelo , Boro , Silicio/farmacología , Hojas de la Planta , Gossypium
7.
Sci Rep ; 13(1): 9190, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280298

RESUMEN

Intensive fertilization of vegetables can promote phosphorus (P) toxicity. However, it can be reversed using silicon (Si), although there is a lack of research clarifying its mechanisms of action. This research aims to study the damage caused by P toxicity to scarlet eggplant plants and whether Si can mitigate this toxicity. We evaluated the nutritional and physiological aspects of plants. Treatments were arranged in a 2 × 2 factorial design of two nutritional levels of adequate P (2 mmol L-1 of P) and toxic/excess P (8 to 13 mmol L-1 of P) combined with the absence or presence of nanosilica (2 mmol L-1 Si) in a nutrient solution. There were six replications. The excess P in the nutrient solution caused damage to scarlet eggplant growth due to nutritional losses and oxidative stress. We found that P toxicity can be mitigated by supplying Si, which decreases P uptake by 13%, improves C:N homeostasis, and increases iron (Fe), copper (Cu), and zinc (Zn) use efficiency by 21%, 10%, and 12%, respectively. At the same time, it decreases oxidative stress and electrolyte leakage by 18% and increases antioxidant compounds (phenols and ascorbic acid by 13% and 50%, respectively), and decreases photosynthetic efficiency and plant growth by 12% (by increasing 23% and 25% of shoot and root dry mass, respectively). These findings allow us to explain the different Si mechanisms used to reverse the damage caused by P toxicity to plants.


Asunto(s)
Silicio , Solanum melongena , Silicio/farmacología , Solanum melongena/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Fotosíntesis
8.
Sci Rep ; 13(1): 10284, 2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355676

RESUMEN

Silicon (Si) nanoparticles can attenuate nutritional disorders caused by phosphorus in forages through nutritional homeostasis. This paper aims to evaluate the effects of P deficiency and toxicity in Megathyrsus maximus cultivated in two types of soils and to verify whether Si application via fertigation can mitigate these imbalances. The following two experiments were carried out: cultivation of forage plants in pots with Entisol and Oxisol, in a 3 × 2 factorial design, with three nutritional levels of phosphorus (deficient, adequate, and excessive) and two Si concentrations in the irrigation water (0 and 1.5 mmol L-1). Height, number of tillers, rate of leaf senescence, dry matter production, C:N, C:Si, C:P, and N:P ratios; and C, P, and N use efficiencies were evaluated in two growth cycles. P imbalances hampered carbon assimilation, C:N:P homeostasis, and dry matter production. Nanosilica fertigation promoted silicon uptake, improving C:N:P homeostasis and nutritional efficiency in plants under P deficiency and toxicity. Leaf senescence was reduced with addition of Si in plants grown in Oxisol in the three nutritional states of P. Silicon attenuated the stress caused by P toxicity in Entisol and Oxisol, improving production in plants without nutritional stress in Oxisol. The supply of Si nanoparticles in the cultivation of M. maximus can contribute to a more efficient and sustainable use of phosphorus in pastures.


Asunto(s)
Poaceae , Silicio , Silicio/farmacología , Fósforo , Plantas , Agua
9.
Sci Rep ; 13(1): 2281, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759536

RESUMEN

Boron is the most limiting micronutrient for soybean yield; therefore, accurate identification of its nutritional status is important for adequate fertilization management and maximize soybean yield potential. Currently, tools for nutritional status interpretation of B, such as the CND and DRIS are used; however, their efficacy is not considered to identify the true nutritional status of B. In this research, we investigated the efficacy of these methods to identify the nutritional status of B in 140 commercial soybean crops to obtain nutritional standards for the DRIS and CND methods. In addition, an experiment of B dose calibration (0, 300, 600, 1200 and 1800 g ha-1) was installed to assess the quality of nutritional diagnoses using the PDA. The experimental approach tested the limits of 0.25, 0.50, and 1.00 for the NRr and values of 1%, 5%, or 10% for YR. The DRIS method was more effective, and, on average, its variations increased yield by 27% compared to CND, with the best performance of DRIS when NRr = 1.00 was adopted with 10% for YR. This study highlights the need for reliable and accurate diagnostic methods with global implications for crop sustainability by improving the efficacy of B fertilization programs and crop yield.


Asunto(s)
Estado Nutricional , Oligoelementos , Boro , Productos Agrícolas , Micronutrientes , Glycine max
10.
J Sci Food Agric ; 103(9): 4360-4370, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36788650

RESUMEN

BACKGROUND: Soybean is widely cultivated around the world, including regions with salinity conditions. Salt stress impairs plant physiology and growth, but recent evidence suggests that silicon (Si) is able to mitigate this stressful condition. Therefore, the purpose of this study was to evaluate how different strategies of Si application impact on salt stress tolerance of an intermediate Si accumulator species (soybean). Therefore, we applied four treatments: Si-untreated plants (Si 0); foliar spraying at 20 mmol L-1 (Si F); nutritive solution addition at 2.0 mol L-1 (Si R), and combined foliar spraying at 20 mmol L-1 plus nutritive solution at 2.0 mmol L-1 (Si F + R). We investigated how Si application modified growth, leaf gas exchange, photosynthetic pigments, chlorophyll fluorescence, relative water content (RWC), nutrient accumulation, and ion homeostasis of soybean plants submitted to different levels of salt stress (50 and 100 mmol L-1 NaCl). RESULTS: Salinity induced an expressive reduction in ion accumulation, plant water status, and growth of soybean, while Si application promoted contrary effects and increased potassium (K+ ) accumulation, water status, photosynthetic pigment content, chlorophyll fluorescence parameters, and gas exchange attributes. Additionally, Si application enhanced Si accumulation associated with decreased Na+ uptake and improved morpho-physiological growth. CONCLUSION: The use of exogenous Si can be an efficient strategy to attenuate the harmful effects of salt stress in soybean plants. The best application strategy was observed with combined foliar spraying with Si included in the nutritive solution (Si F + R). © 2023 Society of Chemical Industry.


Asunto(s)
Glycine max , Silicio , Silicio/farmacología , Estrés Salino , Agua , Clorofila
11.
Food Chem ; 404(Pt A): 134573, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36252378

RESUMEN

Biofortification of iron (Fe) in quinoa (Chenopodium quinoa) grains should have benefits for human health and food security. However, effects of this approach on productivity, as well as Fe content and grain quality remain unknown. Thus, a greenhouse experiment was conducted to determine the impacts of different methods of Fe delivery in a hydroponic system, root application (90 µmol/L), foliar spraying (9 mmol/L), combined root and foliar application, and control (no Fe). Foliar Fe application in four applications at vegetative and reproductive stages stood out from root application in promoting quinoa growth and productivity, perhaps because of greater accumulation of Fe in the plants, leading to increased photosynthetic pigments and electron transport. Foliar application of Fe also improved grain quality, as it was associated with higher Fe contents, ascorbic acid (AsA), total proteins, and manganese (Mn). In addition, there was a decrease in antinutritional compounds and phosphorus (P) in grains. Foliar Fe application can be an efficient agronomic practice to obtain Fe-biofortified quinoa grains and was associated with improved physiological responses and productivity.


Asunto(s)
Biofortificación , Chenopodium quinoa , Humanos , Chenopodium quinoa/metabolismo , Hierro/análisis , Zinc/análisis , Grano Comestible/química , Valor Nutritivo
12.
Gesunde Pflanz ; : 1-14, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38625279

RESUMEN

It is evident the increase in the occurrence of different stresses that impact agriculture and so there has been an increase in research to study stress mitigators including silicon (Si) and selenium (Se). However, the great challenge to be answered would be to assess whether it is possible to maximize these benefits by combining these two elements. Therefore, this review focused on discussing the feasibility of combining Se and Si in mitigating abiotic stresses and also measuring gains in yield and quality of agricultural products. These are the main challenges of plant mineral nutrition with these two elements for sustainable cultivation, ensuring food security with the possibility of improving human health. As the mode of application of an element can change absorption and assimilation processes and consequently the plant's response, it is important to consider research with supply of these elements via the foliar and root route. Thus, we highlighted the potential of the combined application of Se and Si and whether or not they are relevant to overcome the individual application in stress mitigation or even in plants without stress. In addition, we pointed out new directions for research on this topic in order to reinforce the combined use of stress relievers and their potential benefit to crop plants.

13.
Sci Rep ; 12(1): 18125, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302806

RESUMEN

DRIS (Diagnosis Recommendation Integrated System) is a tool used in the interpretation of leaf analyses that values the balance of nutrients, an important fact for a better assessment of the nutritional status of banana plants. Its usefulness depends on the ability to identify the nutrients that limit productivity in order to correct possible nutritional imbalances, but there is a lack of research in all crops, including bananas, to assess the accuracy of these diagnoses, which have a worrying global implication. To this end, this study evaluates DRIS norms for banana cultivation in Ecuador and the use of accuracy measurements for nutritional diagnosis, verifying the capacity of DRIS to detect true nutritional status based on plant response. The database created here contains 233 results referring to productivity and leaf contents of N, P, K, Ca, Mg, S, Cl, Fe, Mn, Cu, B, and Zn for banana trees in 2018, 2019, and 2020. Then, a field experiment evaluated doses of nitrogen and potassium and the accuracy of DRIS norms for N and K. The results show that the DRIS of banana produced in Ecuador depends on the nutrient being variable according to the crop nutritional status. The DRIS norms for diagnosis of N and K result in an acceptable accuracy to identify only deficiencies and toxicities, respectively, indicating the need for adjustments in these standards for later use in the field. Thus, there is a need for more research aiming to adopt calibrated DRIS diagnostic norms to assess the nutritional status of bananas in Ecuador.


Asunto(s)
Musa , Nitrógeno , Potasio , Productos Agrícolas , Hojas de la Planta
14.
Pest Manag Sci ; 78(12): 5432-5436, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057848

RESUMEN

BACKGROUND: Boron (B) and silicon (Si) are fundamental for brassica nutrition, and in some cases, they have potential as an insecticide. Plutella xylostella (L.) (Lepidoptera: Plutellidae), one of the most economically important agricultural pests, is difficult to control due to the resistance to insecticides and the absence of alternative control methods. RESULTS: Cauliflower leaves sprayed with Si and B showed a higher concentration of the beneficial element and micronutrient, respectively. When evaluating the firmness of the cauliflower leaves, it was found that the plants with leaf sprayings of Si and B did not differ statistically from each other. However, they showed an increase in firmness, in relation to the plants of the control treatment. Leaf spraying of Si and B on cauliflower did not influence the number of eggs/female. The attractiveness index showed that both Si and B applications stimulated the presence of second instar larvae, being more stimulating in relation to the control treatment. However, the use of Si and B in isolation showed a positive result, since it caused high mortality in diamondback moth larvae compared to the control treatment. CONCLUSION: The application of both foliar fertilizers positively affects the attractiveness index of the larvae, being attractive; however, both Si and B caused high mortality (~80%). The results showed that Si and B have the potential to control P. xylostella and serve as a basis for alternative pest management in brassica crops. © 2022 Society of Chemical Industry.


Asunto(s)
Brassica , Insecticidas , Mariposas Nocturnas , Animales , Silicio , Boro , Larva
15.
Sci Rep ; 12(1): 16082, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167895

RESUMEN

Silicon (Si) may be involved in the modification of C:N:P stoichiometry and in physiological processes, increasing sorghum growth and grain production. The objective was to evaluate the effect of Si supply on C:N:P:Si stoichiometry, physiological response, growth, and grain production of sorghum. The experiment was carried out in pots with four concentrations of Si: 0; 1.2; 2.4; and 3.6 mmol L-1 in a completely randomized design, with six replicates. Physiological attributes and dark green color index were measured and grain and biomass production were determined. Posteriorly, the plant material was ground to determine silicon (Si), carbon (C), nitrogen (N), and phosphorus (P) contents in order to analyze C:N:P:Si stoichiometry. C:Si and C:N ratios decreased at all Si concentrations applied (1.2, 2.4, and 3.6 mmol L-1) and in all plant parts studied, being lower at 3.6 mmol L-1. The lowest C:P ratios of leaves and roots were observed at 3.6 mmol L-1 Si and the lowest C:P ratio of stems was observed at 1.2 mmol L-1 Si. Si concentrations were not significant for the N:P ratio of leaves. The highest N:P ratio of stems was observed at 3.6 mmol L-1, while the lowest N:P ratio of roots was observed at 2.4 and 3.6 mmol L-1. Regardless of photosynthetic parameters, the application of 1.2 mmol L-1 Si enhanced photosynthetic rate. The application of 2.4 and 3.6 mmol L-1 enhanced stomatal conductance and dark green color index. The mass of 1000 grains was not influenced by Si applications, while Si applications at all concentrations studied (1.2, 2.4, and 3.6 mmol L-1) enhanced shoot and total dry matter, not affecting root dry matter and grain production. In conclusion, Si supply modifies C:N:P:Si stoichiometry and increases physiologic parameters, growth, development, and grain production in sorghum.


Asunto(s)
Silicio , Sorghum , Carbono/farmacología , Grano Comestible , Nitrógeno/farmacología , Fósforo/farmacología , Hojas de la Planta , Silicio/farmacología
16.
Front Plant Sci ; 13: 949909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968098

RESUMEN

Studies with silicon (Si) in sugarcane indicate a greater response in productivity in plants under stress, and the underlying mechanisms of Si in the crop are poorly reported. In this context, the benefits of Si in the crop's stem production are expected to occur at the C:N:P stoichiometry level in plant tissues, benefiting plants with and without stress. However, the extension of this response may vary in different soils. Thus, this research aimed to evaluate if fertigation with Si modifies the C:N:P stoichiometry and if it can increase sugarcane's nutritional efficiency and vegetative and productive parameters. Therefore, three experiments were installed using pre-sprouted seedlings to cultivate sugarcane in tropical soils belonging to the Quartzarenic Neosol, Eutrophic Red Latosol, and Dystrophic Red Latosol classes. The treatments comprised a 2 × 2 factorial scheme in each soil. The first factor was composed without water restriction (water retention = 70%; AWD) and with water restriction (water retention = 35%; PWD). The second factor presented Si concentrations (0 mM and 1.8 mM) arranged in randomized blocks with five replications. Fertigation with Si increases the Si and P concentration, the C and N efficiency, the C:N ratio, and the dry mass production. However, it decreases the C and N concentration and the C:P, C:Si, and N:P ratios in sugarcane leaves and stems regardless of the water regime adopted in the three tropical soils. Cluster and principal components analysis indicated that the intensity of the beneficial effects of Si fertigation on sugarcane plants varies depending on the cultivation soil and water conditions. We found that Si can be used in sugarcane with and without water stress. It changes the C:N:P homeostasis enough to improve the nutritional efficiency of C, P, N, and, consequently, the dry mass accumulation on the stems, with variation in the different cultivated soils.

17.
BMC Plant Biol ; 22(1): 374, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35902800

RESUMEN

BACKGROUND: Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth. METHODS: An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L. in a 2 × 2 factorial scheme in five replications in which the plants were grown under sufficiency (20.5 µmol L-1) and deficiency (0.1 µmol L-1) of Mn combined with the absence and presence of Si (2.0 mmol L-1) for 160 days from the application of the treatments. The following parameters were evaluated: accumulation of Mn and Si, H2O2, MDA, activity of SOD and GPOX, total phenol content, pigments, and quantum efficiency of PSII. RESULTS: Mn deficiency induced the oxidative stress for increase the H2O2 and MDA content in leaves of plants and reduce the activity of antioxidant enzymes and total phenols causing damage to quantum efficiency of photosystem II and pigment content. Si attenuated the effects of Mn deficiency even for a longer period of stress by reducing H2O2 (18%) and MDA (32%) content, and increased the Mn uptake efficiency (53%), SOD activity (23%), GPOX (76%), phenol contents, thus improving growth. CONCLUSIONS: The supply of Si promoted great nutritional and physiological improvements in energy cane with high fiber content in Mn deficiency. The results of this study propose the supply of Si via fertirrigation as a new sustainable strategy for energy cane cultivation in low Mn environments.


Asunto(s)
Manganeso , Silicio , Antioxidantes/metabolismo , Bastones , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fenol/farmacología , Hojas de la Planta/metabolismo , Silicio/farmacología , Superóxido Dismutasa/metabolismo
18.
Sci Rep ; 12(1): 12732, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882954

RESUMEN

Multiple aspects of the physiological and nutritional mechanisms involved with silicon (Si) absorption by quinoa plants remain poorly investigated, as well as the best way of supplying this element to crops. Thus, this study aimed at evaluating whether the application of Si increases its uptake by quinoa plants and consequently the use efficiency of N and P, as well as the levels of phenolic compounds in the leaves, crop productivity and the biofortification of grains. For this purpose, the concentration of 3 mmol L-1 of Si was tested, according to the following procedures: foliar application (F), root application in the nutrient solution (R), combined Si application via nutrient solution and foliar spraying (F + R), and no Si application (0). The provision of Si through the leaves and roots promoted the highest uptake of the element by the plant, which resulted in an increased use efficiency of N and P. Consequently, such a higher uptake favored the productivity of grains. The optimal adoption of the application of Si through leaves and roots promoted the highest Si concentration and ascorbic acid content in quinoa grains.


Asunto(s)
Chenopodium quinoa , Silicio , Biofortificación , Grano Comestible , Hojas de la Planta
19.
Front Plant Sci ; 13: 826512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498639

RESUMEN

Climate change has prolonged periods of water deficit in sugarcane and energy cane crops. This condition induces an imbalance of the carbon (C): nitrogen (N): phosphorus (P) stoichiometric homeostasis, impairing accumulated nutrients from being converted into biomass. Silicon (Si) supplementation can mitigate the damage caused by water deficit in plants by improving the C:N:P balance, increasing C, N, and P use efficiencies and the biomass conversion, and reducing climate change effects on crops. This study assesses the beneficial effects of Si applied through fertigation associated with foliar spraying on the alleviation of damage caused by severe water deficit in sugarcane and energy cane for intermediate and long periods. In addition, the effects in maintenance of nutritional homeostasis we assessed and C, N, and P use efficiencies on sugarcane and energy cane under those conditions were increased. Four experiments were conducted during the first growth cycle of each species. The effect of fertigation associated with Si foliar spraying was evaluated by applying Si only during the seedling formation phase in sugarcane and energy cane grown under severe water deficit for 60 days after transplanting (intermediate period). Then, the effect of Si applied during seedling formation and supplemented after transplanting was evaluated in sugarcane and energy cane grown under severe water deficit for 160 days after transplanting (long period). The Si supply decreased C contents, modified the C:N:P ratio, and increased C, N, and P use efficiencies in plants of both species under water deficit at the intermediate and long periods after transplanting. The effects of applying Si through fertigation associated with foliar spraying during seedling formation mitigated the damage caused by severe water deficit in the intermediate period, which was mainly observed in sugarcane. When supplemented with Si after transplanting, the mitigating effects occurred in both species under severe long period water deficit. Therefore, the Si supply through fertigation associated with foliar spraying is a viable alternative to provide Si to the plant. It also comes with beneficial effects that partially reverse the damage to nutritional homeostasis and increase nutritional efficiency in plants under severe water deficit.

20.
Sci Rep ; 12(1): 6611, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459764

RESUMEN

Forages are one of the most cultivated crops in the world. However, nutritional deficiency is common, specifically in N, P, and Ca in many forage-growing regions. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on Si supply's effects on forage plants are still scarce. This research was carried out to evaluate whether the Si supply can mitigate the effects of N, P, and Ca deficiencies of two forages and the physiological and nutritional mechanisms involved. Two experiments were carried out with two forage species (Urochloa brizantha cv. Marandu and Megathyrsus maximum cv. Massai). We used nutrient solution under balanced nutrition conditions and nutritional stress due to the lack of N, P, and Ca combined with the -Si and +Si. The deficiencies of N, P, and Ca in both forages' cultivation caused damage to physiological and nutritional variables, decreasing the plant dry matter. However, in both forage species, the Si addition to the nutrient solution decreased the extravasation of cellular electrolytes and increased the content of phenolic compounds, the green colour index, the quantum efficiency of photosystem II, the efficiencies of use of N, P and Ca and the production of shoot dry matter. The beneficial effects of Si were evidenced in stressed and non-stressed plants. The research emphasised the advantage of using Si to grow U. brizantha and M. maximum under N, P, and Ca deficiency, contributing to their sustainable cultivation.


Asunto(s)
Desnutrición , Fósforo , Calcio , Humanos , Nitrógeno , Silicio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...