Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 11(6): e2101678, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971210

RESUMEN

In vitro cardiomyocyte (CM) maturation is an imperative step to replicate native heart tissue-like structures as cardiac tissue grafts or as drug screening platforms. CMs are known to interpret biophysical cues such as stiffness, topography, external mechanical stimulation or dynamic perfusion load through mechanotransduction and change their behavior, organization, and maturation. In this regard, a silk-based cardiac tissue (CT) coupled with a dynamic perfusion-based mechanical stimulation platform (DMM) for achieving maturation and functionality in vitro is tried to be delivered. Silk fibroin (SF) is used to fabricate lamellar scaffolds to provide native tissue-like anisotropic architecture and is found to be nonimmunogenic and biocompatible allowing cardiomyocyte attachment and growth in vitro. Further, the scaffolds display excellent mechanical properties by their ability to undergo cyclic compressions without any deformation when places in the DMM. Gradient compression strains (5% to 20%), mimicking the native physiological and pathological conditions, are applied to the cardiomyocyte culture seeded on lamellar silk scaffolds in the DMM. A strain-dependent difference in cardiomyocyte maturation, gene expression, sarcomere elongation, and extracellular matrix formation is observed. These silk-based CTs matured in the DMM can open up several avenues toward the development of host-specific grafts and in vitro models for drug screening.


Asunto(s)
Fibroínas , Materiales Biocompatibles , Fibroínas/química , Mecanotransducción Celular , Perfusión , Seda , Ingeniería de Tejidos , Andamios del Tejido/química
2.
Mater Sci Eng C Mater Biol Appl ; 109: 110547, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228935

RESUMEN

Autologous leukocyte- and platelet-rich plasma (L-PRP) combined with hyaluronic acid (HA) has been widely used in local applications for cartilage and bone regeneration. The association between L-PRP and HA confers structural and rheological changes that differ among individual biomaterials but has not been investigated. Therefore, the standardization and characterization of L-PRP-HA are important to consider when comparing performance results to improve future clinical applications. To this end, we prepared semi-interpenetrating polymer networks (semi-IPNs) of L-PRP and HA and characterized their polymerization kinetics, morphology, swelling ratio, stability and rheological behavior, which we found to be tunable according to the HA molar mass (MM). Mesenchymal stem cells derived from human adipose tissue (h-AdMSCs) seeded in the semi-IPNs had superior viability and chondrogenesis and osteogenesis capabilities compared to the viability and capabilities of fibrin. We have demonstrated that the preparation of the semi-IPNs under controlled mixing ensured the formation of cell-friendly hydrogels rich in soluble factors and with tunable properties according to the HA MM, rendering them suitable for clinical applications in regenerative medicine.


Asunto(s)
Tejido Adiposo/metabolismo , Fibrina , Ácido Hialurónico , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Plasma Rico en Plaquetas/química , Medicina Regenerativa , Tejido Adiposo/citología , Células Cultivadas , Femenino , Fibrina/química , Fibrina/farmacología , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Células Madre Mesenquimatosas/citología
3.
Adv Sci (Weinh) ; 7(5): 1901878, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32154068

RESUMEN

Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible biosensing platform, is proposed. Specifically, 3D cartilage-like tissue constructs are created by multi-material 3D bioprinting using mechanically tunable chondrocyte-laden bioinks. In addition, by optimizing the composition of stiff and soft bioinks in macro-scale printed constructs, the competence of this system in providing improved viability and recapitulation of chondrocyte cell behavior in mechanically robust 3D constructs is demonstrated. Furthermore, the engineered cartilage-like tissue construct is integrated with an electrochemical biosensing system to bring functional olfactory sensations toward multiple specific airway disease biomarkers, explosives, and toxins under biocompatible conditions. Proposed hybrid constructs can lay the groundwork for functional bionic interfaces and humanoid cyborgs.

4.
Appl Biochem Biotechnol ; 189(2): 424-436, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31044369

RESUMEN

Hyaluronic acid (HA) is a macromolecule with valuable benefits over its range of molar masses (MM). Degradation studies are relevant to maintain the same purity level in biomedical studies when using HA of different MM. We degraded HA via high pH and temperature and evaluated its MM, solution behavior, and structure over time. After 24 h, low MM HA was predominant, and the MM decreased from 753 to 36.2 kDa. Dynamic light scattering (DLS) showed a decrease in the number of HA populations, and the solution tended to be less polydispersed. The zeta potential varied from - 10 to - 30 mV, close to the stable range. FTIR showed that the primary structure of HA was affected after only 48 h of reaction. These results are relevant for the production of low MM HA to be used or mixed with high MM HA, generating structured biomaterials for biomedical applications.


Asunto(s)
Calor , Ácido Hialurónico/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
5.
Colloids Surf B Biointerfaces ; 161: 288-295, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29096373

RESUMEN

Platelet-rich plasma (PRP) is an autologous product prepared from whole blood (WB) that is widely used in regenerative medicine. In clinical practice, discontinuous centrifugation is used for both hand- and machine-prepared PRP. However, separation of WB fractions via centrifugation is a complex process, and the lack of clear mechanisms limits the understanding and evaluation of PRP preparation methods This paper focuses on the distribution, recovery and concentration factor of platelets and leukocytes in L-PRP (leukocyte and platelet-rich plasma) to define a concentration pattern for these blood components due to centrifugation conditions. WB collected from three healthy donors was centrifuged for 10min at 50-800 xg in a first step and then at 400 xg in a second step. The results from the first centrifugation step showed most platelets to be distributed in the upper layer (UL) and the buffy coat (BC), with approximately 14.5±5.2% retained in the bottom layer (BL). Most leukocytes were present in the BL. The greatest platelet recoveries from L-PRP were obtained at up to 150 xg (88.5±16.9%). The cumulative concentration factors with respect to the WB from the second centrifugation step were 6 and 1.2 for platelets and leukocytes, respectively. Thus, the concentration patterns delineated three centrifugation ranges with platelet/leukocyte ratios of 205±18, 325±15 and 107±4 and lymphocyte/granulocyte ratios of 1.54±0.74, 0.90±0.08 and 0.42±0.07. These findings contribute to a scientifically based standardization of L-PRP preparations.


Asunto(s)
Plaquetas/citología , Separación Celular/métodos , Centrifugación/métodos , Leucocitos/citología , Plasma Rico en Plaquetas/citología , Recuento de Células Sanguíneas , Humanos , Medicina Regenerativa/métodos , Factores de Tiempo
6.
Mater Sci Eng C Mater Biol Appl ; 62: 967-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26952503

RESUMEN

Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach.


Asunto(s)
Antioxidantes/química , Sustancias Húmicas/análisis , Antioxidantes/metabolismo , Antivirales/química , Antivirales/farmacología , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA