Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 345: 122567, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492919

RESUMEN

The aim was to understand the direct impact of aerobic short-term exercise on lipid metabolism, specifically in regulating the mitochondrial carrier homolog 2 (MTCH2) and how it interferes with lipid metabolism in mesenteric adipose tissue. Swiss mice were divided into three groups: control, sedentary obese, and exercised obese. The obese groups were induced into obesity for fourteen weeks of a high-fat diet, and the trained submitted to seven aerobic exercise sessions. The exercise proved the significant increase of the pPerilipin-1, a hormone-sensitive lipase gene, and modulates lipid metabolism by increasing the expression of Mtch2 and acetyl Co-A carboxylase, perhaps occurring as feedback to regulate lipid metabolism in adipose tissue. In conclusion, we demonstrate, for the first time, how aerobic physical exercise increases Mtch2 transcription in mesenteric adipose tissue. This increase was due to changes in energy demand caused by exercise, confirmed by observing the significant reduction in mesenteric adipose tissue mass in the exercised group. Also, we showed that physical exercise increased the phosphorylative capacity of PLIN1, a protein responsible for the degradation of fatty acids in the lipid droplet, providing acyl and glycerol for cellular metabolism. Although our findings demonstrate evidence of MTCH2 as a protein that regulates lipid homeostasis, scant knowledge exists concerning the signaling of the MTCH2 pathway in regulatingfatty acid metabolism. Therefore, unveiling the means of molecular signaling of MTCH2 demonstrates excellent potential for treating obesity.


Asunto(s)
Tejido Adiposo , Metabolismo de los Lípidos , Proteínas de Transporte de Membrana Mitocondrial , Obesidad , Condicionamiento Físico Animal , Animales , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones Obesos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Obesidad/metabolismo , Condicionamiento Físico Animal/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología
2.
Life Sci ; 329: 121916, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419412

RESUMEN

Obesity can exacerbate the systemic inflammatory process, leading to increased infiltration of monocytes in white adipose tissue (WAT) and polarization of these cells into pro-inflammatory M1 macrophages, while reducing the population of anti-inflammatory M2 macrophages. Aerobic exercise has been shown to be effective in reducing the pro-inflammatory profile. However, the impact of strength training and the duration of training on macrophage polarization in the WAT of obese individuals have not been widely studied. Therefore, our aim was to investigate the effects of resistance exercise on macrophage infiltration and polarization in the epididymal and subcutaneous adipose tissue of obese mice. We compared the following groups: Control (CT), Obese (OB), Obese 7-day strength training (STO7d), and Obese 15-day strength training (STO15d). Macrophage populations were evaluated by flow cytometry: total macrophages (F4/80+), M1 (CD11c), and M2 (CD206) macrophages. Our results demonstrated that both training protocols improved peripheral insulin sensitivity by increasing AKT phosphorylation (Ser473). Specifically, the 7-day training regimen reduced total macrophage infiltration and M2 macrophage levels without altering M1 levels. In the STO15d group, significant differences were observed in total macrophage levels, M1 macrophages, and the M1/M2 ratio compared to the OB group. In the epididymal tissue, a reduction in the M1/M2 ratio was observed in the STO7d group. Overall, our data demonstrate that 15 days of strength exercise can reduce the M1/M2 ratio of macrophages in white adipose tissue.


Asunto(s)
Tejido Adiposo , Resistencia a la Insulina , Ratones , Animales , Inflamación , Tejido Adiposo Blanco , Obesidad/terapia , Macrófagos , Ratones Endogámicos C57BL , Ratones Obesos
3.
Sci Rep ; 12(1): 6913, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484170

RESUMEN

Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible for increasing the greater induction of UCP1 expression via ß-adrenergic receptors. It is known that physical exercise is an important implement for sympathetic stimulation promoting communication between norepinephrine/epinephrine with membrane receptors. Thus, the present study investigates the influence of short-term strength training (STST) on fatty acid composition, lipolysis, lipogenesis, and browning processes in the subcutaneous adipose tissue (sWAT) of obese mice. For this, Swiss mice were divided into three groups: lean control, obesity sedentary, and obese strength training (OBexT). Obese animals were fed a high-fat diet for 14 weeks. Trained obese animals were submitted to 7 days of strength exercise. It was demonstrated that STST sessions were able to reduce fasting glycemia. In the sWAT, the STST was able to decrease the levels of the long-chain fatty acids profile, saturated fatty acid, and palmitic fatty acid (C16:0). Moreover, it was showed that STST did not increase protein levels responsible for lipolysis, the ATGL, ABHD5, pPLIN1, and pHSL. On the other hand, the exercise protocol decreased the expression of the lipogenic enzyme SCD1. Finally, our study demonstrated that the STST increased browning process-related genes such as PGC-1α, PRDM16, and UCP1 in the sWAT. Interestingly, all these biomolecular mechanisms have been observed independently of changes in body weight. Therefore, it is concluded that short-term strength exercise can be an effective strategy to initiate morphological changes in sWAT.


Asunto(s)
Ácidos Grasos , Entrenamiento de Fuerza , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Tejido Adiposo/metabolismo , Animales , Ácidos Grasos/metabolismo , Humanos , Ratones , Ratones Obesos , Obesidad/metabolismo , Termogénesis
4.
Life Sci ; 287: 120124, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34748760

RESUMEN

Hepatic steatosis is directly associated with hepatic inflammation and insulin resistance, which is correlated with hyperglycemia and type 2 diabetes mellitus (T2DM). Aerobic and strength training have been pointed out as efficient strategies against hepatic steatosis. However, little is known about the effects of the combination of those two protocols on hepatic steatosis. Therefore, this study aimed to evaluate the impact of short-term combined training (STCT) on glucose homeostasis and in the synthesis and oxidation of fat in the liver of obesity-induced mice with hepatic steatosis. Swiss mice were distributed into three groups: control lean (CTL), sedentary obese (OB), and combined training obese (CTO). The CTO group performed the STCT protocol, which consisted of strength and aerobic exercises in the same session. The protocol lasted seven days. The CTO group reduced the glucose levels and fatty liver when compared to the OB group. Interestingly, these results were observed even without reductions in body adiposity. CTO group also showed increased hepatic insulin sensitivity, with lower hepatic glucose production (HGP). STCT reduced the expression of the lipogenic genes Fasn and Scd1 and hepatic inflammation, as well as increased the ACC phosphorylation and the oxidative genes Cpt1a and Ppara, reverting the complications caused by obesity. Since this protocol increased lipid oxidation and reduced hepatic lipogenesis, regardless of body fat mass decrease, it can be considered an effective non-pharmacological strategy for the treatment of hepatic steatosis.


Asunto(s)
Hígado Graso/metabolismo , Hígado Graso/terapia , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Hígado/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Prueba de Esfuerzo/métodos , Masculino , Ratones , Obesidad/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/métodos
5.
Mol Biol Rep ; 48(5): 4637-4645, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34036481

RESUMEN

Obesity is a chronic, non-transmissible and multifactorial disease commonly associated with systemic inflammation and damage to health. This disorder has been pointed out as leading to the development of a diversity of eye diseases and, consequently, damage to visual acuity. More specifically, cardiometabolic risk is associated with lacrimal gland dysfunctions, since it changes the inflammatory profile favoring the development and worsening of dry eye disease. In more severe and extreme cases, obesity, inflammation, and diabetes mellitus type 2 can trigger the total loss of vision. In this scenario, besides its numerous metabolic functions, clusterin, an apolipoprotein, has been described as protective to the ocular surface through the seal mechanism. Thus, the current review aimed to explain the role of clusterin in dry eye disease that can be triggered by obesity and diabetes.


Asunto(s)
Clusterina/genética , Diabetes Mellitus Tipo 2/genética , Síndromes de Ojo Seco/genética , Obesidad/genética , Apolipoproteínas/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/patología , Ojo/metabolismo , Ojo/patología , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/patología , Obesidad/complicaciones , Obesidad/patología
6.
J Endocrinol ; 241(1): 59-70, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30878016

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has a positive correlation with obesity, insulin resistance and type 2 diabetes mellitus (T2D). The aerobic training is an important tool in combating NAFLD. However, no studies have demonstrated the molecular effects of short-term strength training on the accumulation of hepatic fat in obese mice. This study aimed to investigate the effects of short-term strength training on the mechanisms of oxidation and lipid synthesis in the liver of obese mice. The short duration protocol was used to avoid changing the amount of adipose tissue. Swiss mice were separated into three groups: lean control (CTL), sedentary obese (OB) and strength training obese (STO). The obese groups were fed a high-fat diet (HFD) and the STO group performed the strength training protocol 1 session/day for 15 days. The short-term strength training reduced hepatic fat accumulation, increasing hepatic insulin sensitivity and controlling hepatic glucose production. The obese animals increased the mRNA of lipogenic genes Fasn and Scd1 and reduced the oxidative genes Cpt1a and Ppara. On the other hand, the STO group presented the opposite results. Finally, the obese animals presented higher levels of lipogenic proteins (ACC and FAS) and proinflammatory cytokines (TNF-α and IL-1ß), but the short-term strength training was efficient in reducing this condition, regardless of body weight loss. In conclusion, there was a reduction of obesity-related hepatic lipogenesis and inflammation after short-term strength training, independent of weight loss, leading to improvements in hepatic insulin sensitivity and glycemic homeostasis in obese mice. Key points: (1) Short-term strength training (STST) reduced fat accumulation and inflammation in the liver; (2) Hepatic insulin sensitivity and HPG control were increased with STST; (3) The content and activity of ACC and content of FAS were reduced with STST; (4) STST improved hepatic fat accumulation and glycemic homeostasis; (5) STST effects were observed independently of body weight change.


Asunto(s)
Gluconeogénesis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Condicionamiento Físico Animal/métodos , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina , Lipogénesis/genética , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/etiología , Obesidad/fisiopatología , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...