Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Bioinform Adv ; 4(1): vbae019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586118

RESUMEN

The advent of microarray and second generation sequencing technology has revolutionized the field of molecular biology, allowing researchers to quantitatively assess transcriptomic and epigenomic features in a comprehensive and cost-efficient manner. Moreover, technical advancements have pushed the resolution of these sequencing techniques to the single cell level. As a result, the bottleneck of molecular biology research has shifted from the bench to the subsequent omics data analysis. Even though most methodologies share the same general strategy, state-of-the-art literature typically focuses on data type specific approaches and already assumes expert knowledge. Here, however, we aim at providing conceptual insight in the principles of genome-wide quantitative transcriptomic and epigenomic (including open chromatin assay) data analysis by describing a generic workflow. By starting from a general framework and its assumptions, the need for alternative or additional data-analytical solutions when working with specific data types becomes clear, and are hence introduced. Thus, we aim to enable readers with basic omics expertise to deepen their conceptual and statistical understanding of general strategies and pitfalls in omics data analysis and to facilitate subsequent progression to more specialized literature.

2.
Mol Plant Pathol ; 25(1): e13424, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279847

RESUMEN

The phenylalanine ammonia-lyase (PAL) enzyme catalyses the conversion of l-phenylalanine to trans-cinnamic acid. This conversion is the first step in phenylpropanoid biosynthesis in plants. The phenylpropanoid pathway produces diverse plant metabolites that play essential roles in various processes, including structural support and defence. Previous studies have shown that mutation of the PAL genes enhances disease susceptibility. Here, we investigated the functions of the rice PAL genes using 2-aminoindan-2-phosphonic acid (AIP), a strong competitive inhibitor of PAL enzymes. We show that the application of AIP can significantly reduce the PAL activity of rice crude protein extracts in vitro. However, when AIP was applied to intact rice plants, it reduced infection of the root-knot nematode Meloidogyne graminicola. RNA-seq showed that AIP treatment resulted in a rapid but transient upregulation of defence-related genes in roots. Moreover, targeted metabolomics demonstrated higher levels of jasmonates and antimicrobial flavonoids and diterpenoids accumulating after AIP treatment. Furthermore, chemical inhibition of the jasmonate pathway abolished the effect of AIP on nematode infection. Our results show that disturbance of the phenylpropanoid pathway by the PAL inhibitor AIP induces defence in rice against M. graminicola by activating jasmonate-mediated defence.


Asunto(s)
Oryza , Oxilipinas , Tylenchoidea , Animales , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Oryza/genética , Oryza/metabolismo , Tylenchoidea/fisiología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo
3.
Mol Ecol ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933429

RESUMEN

A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.

4.
Epigenetics Chromatin ; 16(1): 31, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537688

RESUMEN

BACKGROUND: DNA hypermethylation is an epigenetic feature that modulates gene expression, and its deregulation is observed in cancer. Previously, we identified a neural-related DNA hypermethylation fingerprint in colon cancer, where most of the top hypermethylated and downregulated genes have known functions in the nervous system. To evaluate the presence of this signature and its relevance to carcinogenesis in general, we considered 16 solid cancer types available in The Cancer Genome Atlas (TCGA). RESULTS: All tested cancers showed significant enrichment for neural-related genes amongst hypermethylated genes. This signature was already present in two premalignant tissue types and could not be explained by potential confounders such as bivalency status or tumor purity. Further characterization of the neural-related DNA hypermethylation signature in colon cancer showed particular enrichment for genes that are overexpressed during neural differentiation. Lastly, an analysis of upstream regulators identified RE1-Silencing Transcription factor (REST) as a potential mediator of this DNA methylation signature. CONCLUSION: Our study confirms the presence of a neural-related DNA hypermethylation fingerprint in various cancers, of genes linked to neural differentiation, and points to REST as a possible regulator of this mechanism. We propose that this fingerprint indicates an involvement of DNA hypermethylation in the preservation of neural stemness in cancer cells.


Asunto(s)
Neoplasias del Colon , Metilación de ADN , Humanos , Neoplasias del Colon/genética , ADN
5.
Proc Biol Sci ; 290(1999): 20230368, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37221849

RESUMEN

Hibernation consists of alternating torpor-arousal phases, during which animals cope with repetitive hypothermia and ischaemia-reperfusion. Due to limited transcriptomic and methylomic information for facultative hibernators, we here conducted RNA and whole-genome bisulfide sequencing in liver of hibernating Syrian hamster (Mesocricetus auratus). Gene ontology analysis was performed on 844 differentially expressed genes and confirmed the shift in metabolic fuel utilization, inhibition of RNA transcription and cell cycle regulation as found in seasonal hibernators. Additionally, we showed a so far unreported suppression of mitogen-activated protein kinase (MAPK) and protein phosphatase 1 pathways during torpor. Notably, hibernating hamsters showed upregulation of MAPK inhibitors (dual-specificity phosphatases and sproutys) and reduced levels of MAPK-induced transcription factors (TFs). Promoter methylation was found to modulate the expression of genes targeted by these TFs. In conclusion, we document gene regulation between hibernation phases, which may aid the identification of pathways and targets to prevent organ damage in transplantation or ischaemia-reperfusion.


Asunto(s)
Hibernación , Transcriptoma , Animales , Cricetinae , Mesocricetus , Hígado , Perfilación de la Expresión Génica
6.
Plant Physiol ; 193(3): 2071-2085, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052181

RESUMEN

In a continuously changing and challenging environment, passing down the memory of encountered stress factors to offspring could provide an evolutionary advantage. In this study, we demonstrate the existence of "intergenerational acquired resistance" in the progeny of rice (Oryza sativa) plants attacked by the belowground parasitic nematode Meloidogyne graminicola. Transcriptome analyses revealed that genes involved in defense pathways are generally downregulated in progeny of nematode-infected plants under uninfected conditions but show a stronger induction upon nematode infection. This phenomenon was termed "spring loading" and depends on initial downregulation by the 24-nucleotide (nt) siRNA biogenesis gene dicer-like 3a (dcl3a) involved in the RNA-directed DNA methylation pathway. Knockdown of dcl3a led to increased nematode susceptibility and abolished intergenerational acquired resistance, as well as jasmonic acid/ethylene spring loading in the offspring of infected plants. The importance of ethylene signaling in intergenerational resistance was confirmed by experiments on a knockdown line of ethylene insensitive 2 (ein2b), which lacks intergenerational acquired resistance. Taken together, these data indicate a role for DCL3a in regulating plant defense pathways during both within-generation and intergenerational resistance against nematodes in rice.


Asunto(s)
Oryza , Tylenchoidea , Animales , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Etilenos/metabolismo , Tylenchoidea/fisiología , Hormonas/metabolismo , Raíces de Plantas/metabolismo
7.
Front Plant Sci ; 14: 1112007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824193

RESUMEN

Induced resistance (IR) is a plant phenotype characterized by lower susceptibility to biotic challenges upon elicitation by so-called IR stimuli. Earlier, we identified diproline (cyclo(l-Pro-l-Pro)) as IR stimulus that protects rice (Oryza sativa) against the root-knot nematode Meloidogyne graminicola (Mg). In the current study, detailed transcriptome analyses at different time points, and under uninfected and nematode-infected conditions revealed that this rice IR phenotype is correlated with induction of genes related to iron (Fe), ethylene (ET) and reactive oxygen species (ROS)/reactive nitrogen species (RNS) metabolism. An infection experiment under Fe limiting conditions confirmed that diproline-IR is only effective under optimal Fe supply. Although total root Fe levels were not affected in diproline-treated plants, phytosiderophore secretion was found to be induced by this treatment. Experiments on mutant and transgenic rice lines impaired in ET or ROS/RNS metabolism confirmed that these metabolites are involved in diproline-IR. Finally, we provide evidence for transgenerational inheritance of diproline-IR (diproline-TIR), as two successive generations of diproline-treated ancestors exhibited an IR phenotype while themselves never being exposed to diproline. Transcriptome analyses on the offspring plants revealed extensive overlap between the pathways underpinning diproline-IR and diproline-TIR. Although diproline induces significant systemic changes in global DNA methylation levels early after treatment, such changes in DNA methylation were not detected in the descendants of these plants. To our knowledge, this is the first report of TIR in rice and the first transcriptional assessment of TIR in monocots.

8.
PLoS Genet ; 18(11): e1010333, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374836

RESUMEN

The extreme adaptation potential of the generalist herbivore Tetranychus urticae (the two-spotted spider mite) to pesticides as well as diverse host plants has been associated with clade-specific gene expansions in known detoxifying enzyme families, and with extensive and rapid transcriptional responses. However, how this broad transcriptional potential is regulated remains largely unknown. Using a parental/F1 design in which four inbred strains were crossed to a common inbred strain, we assessed the genetic basis and inheritance of gene expression variation in T. urticae. Mirroring known phenotypic variation in the progenitor strains of the inbreds, we confirmed that the inbred strains we created were genetically distinct, varied markedly in pesticide resistance, and also captured variation in host plant fitness as is commonly observed in this species. By examining differences in gene expression between parents and allele-specific expression in F1s, we found that variation in RNA abundance was more often explained in trans as compared to cis, with the former associated with dominance in inheritance. Strikingly, in a gene ontology analysis, detoxification genes of the cytochrome P450 monooxygenase (CYP) family, as well as dioxygenases (DOGs) acquired from horizontal gene transfer from fungi, were specifically enriched at the extremes of trans-driven up- and downregulation. In particular, multiple CYPs and DOGs with broad substrate-specificities for pesticides or plant specialized compounds were exceptionally highly upregulated as a result of trans-regulatory variation, or in some cases synergism of cis and trans, in the most multi-pesticide resistant strains. Collectively, our findings highlight the potential importance of trans-driven expression variation in genes associated with xenobiotic metabolism and host plant use for rapid adaptation in T. urticae, and also suggests modular control of these genes, a regulatory architecture that might ameliorate negative pleiotropic effects.


Asunto(s)
Plaguicidas , Tetranychidae , Animales , Tetranychidae/genética , Herbivoria , Transferencia de Gen Horizontal , Adaptación Fisiológica , Plantas
9.
Mol Ecol Resour ; 22(8): 3141-3160, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35763352

RESUMEN

The European starling, Sturnus vulgaris, is an ecologically significant, globally invasive avian species that is also suffering from a major decline in its native range. Here, we present the genome assembly and long-read transcriptome of an Australian-sourced European starling (S. vulgaris vAU), and a second, North American, short-read genome assembly (S. vulgaris vNA), as complementary reference genomes for population genetic and evolutionary characterization. S. vulgaris vAU combined 10× genomics linked-reads, low-coverage Nanopore sequencing, and PacBio Iso-Seq full-length transcript scaffolding to generate a 1050 Mb assembly on 6222 scaffolds (7.6 Mb scaffold N50, 94.6% busco completeness). Further scaffolding against the high-quality zebra finch (Taeniopygia guttata) genome assigned 98.6% of the assembly to 32 putative nuclear chromosome scaffolds. Species-specific transcript mapping and gene annotation revealed good gene-level assembly and high functional completeness. Using S. vulgaris vAU, we demonstrate how the multifunctional use of PacBio Iso-Seq transcript data and complementary homology-based annotation of sequential assembly steps (assessed using a new tool, saaga) can be used to assess, inform, and validate assembly workflow decisions. We also highlight some counterintuitive behaviour in traditional busco metrics, and present buscomp, a complementary tool for assembly comparison designed to be robust to differences in assembly size and base-calling quality. This work expands our knowledge of avian genomes and the available toolkit for assessing and improving genome quality. The new genomic resources presented will facilitate further global genomic and transcriptomic analysis on this ecologically important species.


Asunto(s)
Estorninos , Animales , Australia , Genoma/genética , Genómica , Anotación de Secuencia Molecular , Estorninos/genética
10.
Mol Plant Pathol ; 23(9): 1303-1319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35587614

RESUMEN

Ascorbic acid (AsA) is an important antioxidant in plants and regulates various physiological processes. In this study, we show that exogenous treatments with the oxidized form of AsA, that is, dehydroascorbate (DHA), activates induced systemic resistance in rice against the root-knot nematode Meloidogyne graminicola, and investigate the molecular and biochemical mechanisms underlying this phenotype. Detailed transcriptome analysis on roots of rice plants showed an early and robust transcriptional response on foliar DHA treatment, with induction of several genes related to plant stress responses, immunity, antioxidant activity, and secondary metabolism already at 1 day after treatment. Quantitative and qualitative evaluation of H2 O2 levels confirmed the appearance of a reactive oxygen species (ROS) burst on DHA treatment, both at the site of treatment and systemically. Experiments using chemical ROS inhibitors or scavengers confirmed that H2 O2 accumulation contributes to DHA-based induced resistance. Furthermore, hormone measurements in DHA-treated plants showed a significant systemic accumulation of the defence hormone salicylic acid (SA). The role of the SA pathway in DHA-based induced resistance was confirmed by nematode infection experiments using an SA-signalling deficient WRKY45-RNAi line and reverse transcription-quantitative PCR on SA marker genes. Our results collectively reveal that DHA activates induced systemic resistance in rice against the root-knot nematode M. graminicola, mediated through the production of ROS and activation of the SA pathway.


Asunto(s)
Oryza , Tylenchoidea , Animales , Hormonas/metabolismo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Tylenchoidea/fisiología
13.
BMC Genomics ; 23(1): 44, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35012466

RESUMEN

BACKGROUND: Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world's most important staple crops - rice - was investigated throughout plant development using next-generation sequencing. RESULTS: Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. CONCLUSIONS: This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production.


Asunto(s)
Oryza , Elementos Transponibles de ADN , Endospermo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Desarrollo de la Planta , ARN de Planta , ARN Interferente Pequeño , Semillas
14.
BMC Genomics ; 22(1): 635, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465293

RESUMEN

BACKGROUND: Brine shrimp Artemia have an unequalled ability to endure extreme salinity and complete anoxia. This study aims to elucidate its strategies to cope with these stressors. RESULTS AND DISCUSSION: Here, we present the genome of an inbred A. franciscana Kellogg, 1906. We identified 21,828 genes of which, under high salinity, 674 genes and under anoxia, 900 genes were differentially expressed (42%, respectively 30% were annotated). Under high salinity, relevant stress genes and pathways included several Heat Shock Protein and Leaf Embryogenesis Abundant genes, as well as the trehalose metabolism. In addition, based on differential gene expression analysis, it can be hypothesized that a high oxidative stress response and endocytosis/exocytosis are potential salt management strategies, in addition to the expression of major facilitator superfamily genes responsible for transmembrane ion transport. Under anoxia, genes involved in mitochondrial function, mTOR signalling and autophagy were differentially expressed. Both high salt and anoxia enhanced degradation of erroneous proteins and protein chaperoning. Compared with other branchiopod genomes, Artemia had 0.03% contracted and 6% expanded orthogroups, in which 14% of the genes were differentially expressed under high salinity or anoxia. One phospholipase D gene family, shown to be important in plant stress response, was uniquely present in both extremophiles Artemia and the tardigrade Hypsibius dujardini, yet not differentially expressed under the described experimental conditions. CONCLUSIONS: A relatively complete genome of Artemia was assembled, annotated and analysed, facilitating research on its extremophile features, and providing a reference sequence for crustacean research.


Asunto(s)
Artemia , Extremófilos , Animales , Artemia/genética , Ambientes Extremos , Proteínas de Choque Térmico , Salinidad
15.
BMC Genomics ; 22(1): 560, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284724

RESUMEN

BACKGROUND: Root knot nematodes (RKN) are plant parasitic nematodes causing major yield losses of widely consumed food crops such as rice (Oryza sativa). Because non-coding RNAs, including small interfering RNAs (siRNA), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are key regulators of various plant processes, elucidating their regulation during this interaction may lead to new strategies to improve crop protection. In this study, we aimed to identify and characterize rice siRNAs, miRNAs and lncRNAs responsive to early infection with RKN Meloidogyne graminicola (Mg), based on sequencing of small RNA, degradome and total RNA libraries from rice gall tissues compared with uninfected root tissues. RESULTS: We found 425 lncRNAs, 3739 siRNAs and 16 miRNAs to be differentially expressed between both tissues, of which a subset was independently validated with RT-qPCR. Functional prediction of the lncRNAs indicates that a large part of their potential target genes code for serine/threonine protein kinases and transcription factors. Differentially expressed siRNAs have a predominant size of 24 nts, suggesting a role in DNA methylation. Differentially expressed miRNAs are generally downregulated and target transcription factors, which show reduced degradation according to the degradome data. CONCLUSIONS: To our knowledge, this work is the first to focus on small and long non-coding RNAs in the interaction between rice and Mg, and provides an overview of rice non-coding RNAs with the potential to be used as a resource for the development of new crop protection strategies.


Asunto(s)
MicroARNs , Oryza , ARN Largo no Codificante , Tylenchoidea , Animales , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Oryza/genética , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética , Tylenchoidea/genética
17.
Nat Biotechnol ; 39(11): 1453-1465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34140680

RESUMEN

Existing compendia of non-coding RNA (ncRNA) are incomplete, in part because they are derived almost exclusively from small and polyadenylated RNAs. Here we present a more comprehensive atlas of the human transcriptome, which includes small and polyA RNA as well as total RNA from 300 human tissues and cell lines. We report thousands of previously uncharacterized RNAs, increasing the number of documented ncRNAs by approximately 8%. To infer functional regulation by known and newly characterized ncRNAs, we exploited pre-mRNA abundance estimates from total RNA sequencing, revealing 316 microRNAs and 3,310 long non-coding RNAs with multiple lines of evidence for roles in regulating protein-coding genes and pathways. Our study both refines and expands the current catalog of human ncRNAs and their regulatory interactions. All data, analyses and results are available for download and interrogation in the R2 web portal, serving as a basis for future exploration of RNA biology and function.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero , ARN no Traducido/genética , Transcriptoma/genética
18.
EBioMedicine ; 67: 103383, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34000624

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are among the most common and highly mutated human malignancies. Understanding the impact of DNA methylation in cSCC may provide avenues for new therapeutic strategies. METHODS: We used reduced-representation bisulfite sequencing for DNA methylation analysis of murine cSCC. Differential methylation was assessed at the CpG level using limma. Next, we compared with human cSCC Infinium HumanMethylation BeadArray data. Genes were considered to be of major relevance when they featured at least one significantly differentially methylated CpGs (RRBS) / probes (Infinium) with at least a 30% difference between tumour vs. control in both a murine gene and its human orthologue. The human EPIC Infinium data were used to distinguish two cSCC subtypes, stem-cell-like and keratinocyte-like tumours. FINDINGS: We found increased average methylation in mouse cSCC (by 12.8%, p = 0.0011) as well as in stem-cell like (by 3.1%, p=0.002), but not keratinocyte-like (0.2%, p = 0.98), human cSCC. Comparison of differentially methylated genes revealed striking similarities between human and mouse cSCC. Locus specific methylation changes in mouse cSCC often occurred in regions of potential regulatory function, including enhancers and promoters. A key differentially methylated region was located in a potential enhancer of the tumour suppressor gene Filip1l and its expression was reduced in mouse tumours. Moreover, the FILIP1L locus showed hypermethylation in human cSCC and lower expression in human cSCC cell lines. INTERPRETATION: Deregulation of DNA methylation is an important feature of murine and human cSCC that likely contributes to silencing of tumour suppressor genes, as shown for Filip1l. FUNDING: British Skin Foundation, Cancer Research UK.


Asunto(s)
Carcinoma de Células Escamosas/genética , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Metilación de ADN , Neoplasias Cutáneas/genética , Animales , Carcinoma de Células Escamosas/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias Cutáneas/patología
19.
Front Cell Dev Biol ; 9: 583555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816458

RESUMEN

Song learning in zebra finches (Taeniopygia guttata) is a prototypical example of a complex learned behavior, yet knowledge of the underlying molecular processes is limited. Therefore, we characterized transcriptomic (RNA-sequencing) and epigenomic (RRBS, reduced representation bisulfite sequencing; immunofluorescence) dynamics in matched zebra finch telencephalon samples of both sexes from 1 day post hatching (1 dph) to adulthood, spanning the critical period for song learning (20 and 65 dph). We identified extensive transcriptional neurodevelopmental changes during postnatal telencephalon development. DNA methylation was very low, yet increased over time, particularly in song control nuclei. Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by differential CpG and CpH DNA methylation. However, a strong association between DNA methylation and age-dependent gene expression was found for various transcription factors (i.e., OTX2, AR, and FOS) involved in neurodevelopment. Incomplete dosage compensation, independent of DNA methylation, was found to be largely responsible for sexually dimorphic gene expression, with dosage compensation increasing throughout life. In conclusion, our results indicate that DNA methylation regulates neurodevelopmental gene expression dynamics through steering transcription factor activity, but does not explain sexually dimorphic gene expression patterns in zebra finch telencephalon.

20.
Clin Epigenetics ; 13(1): 80, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858496

RESUMEN

PURPOSE: Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation. METHODS: DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool samples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and clusterProfiler. RESULTS: GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combinations of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in the set of best performing CRC-specific biomarkers. CONCLUSION: In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Metilación de ADN/genética , Detección Precoz del Cáncer/métodos , Epigenómica/métodos , Anciano , Biomarcadores de Tumor/genética , Sistema Nervioso Central/metabolismo , Neoplasias Colorrectales/metabolismo , Epigénesis Genética/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...