Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Microbiol Infect ; 29(2): 256.e1-256.e4, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36115649

RESUMEN

OBJECTIVES: To compare the RNA loads of severe acute respiratory syndrome coronavirus 2 in nasopharyngeal specimens collected from patients with breakthrough coronavirus disease 2019 (COVID-19) caused by the Delta variant with those in specimens collected from patients with breakthrough COVID-19 caused by the Omicron variant. METHODS: A retrospective, observational study was conducted, including 240 consecutive adult out-patients, of whom 121 (74 females; median age, 40 years) had COVID-19 due to the Omicron variant and 119 (65 females; median age, 48 years) had COVID-19 caused by the Delta variant. The viral RNA load was quantitated using the TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, MS, USA). The viability platinum chloride reverse transcription-PCR assay was used to discriminate between potentially infectious viral particles and free (encapsidated) viral RNA. RESULTS: Overall, the viral RNA loads were significantly higher (p 0.003) for the Omicron variant (median, 8.1 log10 copies/mL; range, 4.0-10.9 log10 copies/mL) than for the Delta variant (median, 7.5 log10 copies/mL; range, 3.0-11.6 log10 copies/mL). A trend towards higher viral loads was noticed for Omicron compared with that for Delta across the following time frames since vaccination: 16-90 days (median, 6.83 vs. 5.88 log10 copies/mL, respectively; range, 3.91-10.68 vs. 3.67-9.66 log10 copies/mL, respectively; p 0.10), 91-180 days (median, 8.09 vs. 7.46 log10 copies/mL, respectively; range, 4.30-10.92 vs. 3.03-11.56 log10 copies/mL, respectively; p 0.003) and 181-330 days (median, 8.56 vs. 8.10 log10 copies/mL, respectively; range, 6.51-10.29 vs. 3.03-10.61 log10 copies/mL, respectively; p 0.11). The platinum chloride treated or untreated reverse transcription-PCR cycle threshold ratio for the nucleocapsid gene as the target was slightly higher for Omicron than for Delta (median, 0.62 vs. 0.57, respectively; range, 0.57-0.98 vs. 0.61-0.87, respectively), although statistical significance was not reached (p 0.10). CONCLUSION: The time elapsed since vaccination has a major impact on the RNA loads of severe acute respiratory syndrome coronavirus 2 in nasopharyngeal specimens, particularly for the Omicron variant. The Omicron variant may be better adapted for replication in the upper respiratory tract than the Delta variant, in which this is unlikely given its more efficient generation of viral particles.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Femenino , Humanos , Persona de Mediana Edad , SARS-CoV-2/genética , Estudios Retrospectivos , ARN Viral/genética
2.
J Med Virol ; 94(12): 5836-5840, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35986484

RESUMEN

This retrospective observational study compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA load in nasopharyngeal specimens (NPs) from patients with breakthrough coronavirus disease 2019 (COVID-19) caused by the Omicron BA.1 or BA.2 sublineages. The convenience sample was composed of 277 outpatients (176 female/112 male; median age, 48 years; range, 12-97) with breakthrough COVID-19 (n = 130 due to BA.1 and n = 147 due to BA.2). All participants had completed a full vaccination schedule and 56% had received a booster vaccine dose at the time of COVID-19 breakthrough microbiological diagnosis. NPs were collected within 7 days (median 2 days) after symptom onset. The TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific) was used to estimate viral loads in NPs. Overall, viral RNA loads in NPs were comparable (p = 0.31) for BA.1 (median, 7.1 log10 copies/ml; range, 2.7-10.6) and BA.2 (median, 7.5 log10 copies/ml; range, 2.7-10.6), yet peak viral load appeared to be reached sooner for BA.2 than for BA.1 (Day 1 vs. Days 3-5; p = 0.002). Time elapsed since last vaccine dose had no significant impact on SARS-CoV-2 RNA loads in the upper respiratory tract (URT) for either BA.1 or BA.2. The data presented do not support that the transmissibility advantage of BA.2 over BA.1 is related to generation of higher viral loads in the URT early after infection.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Vacunas contra la COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , ARN Viral/genética , SARS-CoV-2/genética
4.
BMC Infect Dis ; 22(1): 172, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189833

RESUMEN

BACKGROUND: To investigate the multi-drug resistant bacteria (MDRB) colonization rate in hematological patients hospitalized for any cause using a multi-body-site surveillance approach, and determine the extent to which this screening strategy helped anticipate MDRB bloodstream infections (BSI). METHODS: Single-center retrospective observational study including 361 admissions documented in 250 adult patients. Surveillance cultures of nasal, pharyngeal, axillary and rectal specimens (the latter two combined) were performed at admission and subsequently on a weekly basis. Blood culture samples were incubated in an automated continuous monitoring blood culturing instrument (BACTEC FX). RESULTS: In total, 3463 surveillance cultures were performed (pharyngeal, n = 1201; axillary-rectal, n = 1200; nasal, n = 1062). MDRB colonization was documented in 122 out of 361 (33.7%) admissions corresponding to 86 patients (34.4%). A total of 149 MDRB were isolated from one or more body sites, of which most were Gram-negative bacteria, most frequently non-fermenting (n = 83) followed by Enterobacterales (n = 51). BSI were documented in 102 admissions (28%) involving 87 patients. Overall, the rate of BSI caused by MDRB was significantly higher (p = 0.04) in the presence of colonizing MDRB (16 out of 47 admissions in 14 patients) than in its absence (9 out of 55 admissions in 9 patients). Colonization by any MDRB was independently associated with increased risk of MDRB-BSI (HR, 3.70; 95% CI, 1.38-9.90; p = 0.009). CONCLUSION: MDRB colonization is a frequent event in hematological patients hospitalized for any reason and is associated with an increased risk of MDRB BSI. The data lend support to the use of MDRB colonization surveillance cultures for predicting the occurrence of MDRB BSI in this cohort.


Asunto(s)
Bacteriemia , Preparaciones Farmacéuticas , Sepsis , Adulto , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Humanos , Estudios Retrospectivos , Sepsis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...