Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(7)2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37515096

RESUMEN

The SARS-CoV-2 pandemic demonstrated the need for potent and broad-spectrum vaccines. This study reports the development and testing of a lumpy skin disease virus (LSDV)-vectored vaccine against SARS-CoV-2, utilizing stabilized spike and conserved nucleocapsid proteins as antigens to develop robust immunogenicity. Construction of the vaccine (LSDV-SARS2-S,N) was confirmed by polymerase chain reaction (PCR) amplification and sequencing. In vitro characterization confirmed that cells infected with LSDV-SARS2-S,N expressed SARS-CoV-2 spike and nucleocapsid protein. In BALB/c mice, the vaccine elicited high magnitude IFN-γ ELISpot responses (spike: 2808 SFU/106 splenocytes) and neutralizing antibodies (ID50 = 6552). Testing in hamsters, which emulate human COVID-19 disease progression, showed the development of high titers of neutralizing antibodies against the Wuhan and Delta SARS-CoV-2 variants (Wuhan ID50 = 2905; Delta ID50 = 4648). Additionally, hamsters vaccinated with LSDV-SARS2-S,N displayed significantly less weight loss, lung damage, and reduced viral RNA copies following SARS-CoV-2 infection with the Delta variant as compared to controls, demonstrating protection against disease. These data demonstrate that LSDV-vectored vaccines display promise as an effective SARS-CoV-2 vaccine and as a potential vaccine platform for communicable diseases in humans and animals. Further efficacy testing and immune response analysis, particularly in non-human primates, are warranted.


Asunto(s)
COVID-19 , Virus de la Dermatosis Nodular Contagiosa , Vacunas , Animales , Cricetinae , Bovinos , Ratones , Humanos , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
2.
J Gen Virol ; 103(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35594121

RESUMEN

In vivo nucleic expression technologies using DNA or mRNA offer several advantages for recombinant gene expression. Their inherent ability to generate natively expressed recombinant proteins and antigens allows these technologies to mimic foreign gene expression without infection. Furthermore, foreign nucleic acid fragments have an inherent ability to act as natural immune adjuvants and stimulate innate pathogen- and DNA damage-associated receptors that are responsible for activating pathogen-associated molecular pattern (PAMP) and DNA damage-associated molecular pattern (DAMP) signalling pathways. This makes nucleic-acid-based expression technologies attractive for a wide range of vaccine and oncolytic immunotherapeutic uses. Recently, RNA vaccines have demonstrated their efficacy in generating strong humoral and cellular immune responses for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). DNA vaccines, which are more stable and easier to manufacture, generate similar immune responses to RNA, but typically exhibit lower immunogenicity. Here we report on a novel method of constructing self-amplifying DNA expression vectors that have the potential to amplify and enhance gene/antigen expression at a cellular level by increasing per cell gene copy numbers, boost genomic adjuvating effects and mitigate through replication many of the problems faced by non-replicating vectors such as degradation, methylation and gene silencing. These vectors employ a viral origin rolling circle replication cycle in mammalian host cells that amplifies the vector and gene of interest (GOI) copy number, maintaining themselves as nuclear episomes. We show that these vectors maintain persistently elevated GOI expression levels at the cellular level and induce morphological cellular alterations synonymous with increased cellular stress.


Asunto(s)
COVID-19 , Circovirus , Vacunas de ADN , Animales , Circovirus/genética , Vectores Genéticos/genética , Mamíferos , SARS-CoV-2 , Vacunas de ADN/genética
3.
J Gen Virol ; 98(9): 2329-2338, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28885140

RESUMEN

The preparation of infectious beak and feather disease circovirus virions (BFDV) has until now relied on the extraction of virus from whole tissue of deceased or euthanized parrots known to be infected with the virus. Extraction from diseased tissue is necessary, as the virus has yet to be grown in vitro using tissue-cultured cells from any source. While infectious DNA clones have been synthesized for porcine and duck circoviruses, and both replicate in host cells and result in active viral infection in animals, this has not been shown for BFDV. The aim of this study was to prepare an infectious BFDV genomic clone that could be used as challenge material in birds for vaccine testing. A putatively infectious BFDV genomic clone was designed and tested in mammalian cell culture, and in the plant Nicotiana benthamiana in the presence of plant-specific ssDNA geminivirus replication components. Replication was assessed using rolling-circle amplification, qPCR, replication-deficient clones and rescue plasmids. We showed that a synthetic partially dimeric BFDV genomic clone self-replicated when transfected into 293TT mammalian cells, and was also replicated in N. benthamiana in the presence of geminivirus replication elements. This is the first report of a BFDV genome replicating in any cell system, and the first report of a circovirus replicating with the aid of a geminivirus in a plant. Both of these developments could open up possibilities for making reagents and vaccines for BFDV, testing vaccine efficacy and investigating viral replication using rationally designed artificial genomes.


Asunto(s)
Infecciones por Circoviridae/virología , Circovirus/fisiología , ADN Viral/genética , Nicotiana/virología , Animales , Línea Celular , Circovirus/genética , Circovirus/crecimiento & desarrollo , Replicación del ADN , ADN Viral/síntesis química , ADN Viral/metabolismo , Células HEK293 , Humanos , Filogenia , Porcinos , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...