Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 807(Pt 2): 151231, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34715230

RESUMEN

The Abrolhos bank is home of the richest coral reef system of the Southwestern Atlantic, where endemic coral species are found. It has been reported that Abrolhos' corals are under intense stress due to increasing of Marine Heat Waves during the last decades. Additionally, anthropic interventions along the adjacent coastal regions are a factor of concern since they contribute to the increase in the sediment load and to organic debris input in the reef domain. In November 2015, the collapse of the Fundão mining tailings dam resulted in the release of approximately 50 million m3 of iron oxide and quartz-rich slurry into the Doce River. Aiming at using a fingerprint of the tailings and to assess the presence of traces of the Fundão dam material from this event on the Abrolhos bank, this work presents new 87Sr/86Sr and 143Nd/144Nd isotope ratios of marine suspended sediment samples collected between 2016 and 2020 from a network of sediment traps throughout the reef and complementary suspended material at sea. In parallel, we monitored meteo-oceanographic parameters and modeled surface marine currents as an attempt to identify the sediment transport between the Doce River mouth and Abrolhos bank. The r isotopes were used as provenance proxies based on the fact that minerals and rocks tend to have specific isotopic signatures reflecting their own geological derivation. In this context, the isotopic ratios of various potential regional sources for the sedimentation in Abrolhos bank were evaluated. Our monitoring and isotopic measurements indicate that Doce River signatures are detected at Abrolhos bank, following the seasonal Doce River discharge at sea. Isotopic signature of Doce River at Abrolhos bank was also observed during the austral winter (July-August) when cold fronts migrate at the Brazilian coast with higher frequency and energy.


Asunto(s)
Antozoos , Colapso de la Estructura , Animales , Brasil , Arrecifes de Coral , Sedimentos Geológicos , Isótopos
2.
Fungal Genet Biol ; 49(11): 922-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23022488

RESUMEN

The hemibiotrophic basidiomycete fungus Moniliophthora perniciosa, the causal agent of Witches' broom disease (WBD) in cacao, is able to grow on methanol as the sole carbon source. In plants, one of the main sources of methanol is the pectin present in the structure of cell walls. Pectin is composed of highly methylesterified chains of galacturonic acid. The hydrolysis between the methyl radicals and galacturonic acid in esterified pectin, mediated by a pectin methylesterase (PME), releases methanol, which may be decomposed by a methanol oxidase (MOX). The analysis of the M. pernciosa genome revealed putative mox and pme genes. Real-time quantitative RT-PCR performed with RNA from mycelia grown in the presence of methanol or pectin as the sole carbon source and with RNA from infected cacao seedlings in different stages of the progression of WBD indicate that the two genes are coregulated, suggesting that the fungus may be metabolizing the methanol released from pectin. Moreover, immunolocalization of homogalacturonan, the main pectic domain that constitutes the primary cell wall matrix, shows a reduction in the level of pectin methyl esterification in infected cacao seedlings. Although MOX has been classically classified as a peroxisomal enzyme, M. perniciosa presents an extracellular methanol oxidase. Its activity was detected in the fungus culture supernatants, and mass spectrometry analysis indicated the presence of this enzyme in the fungus secretome. Because M. pernciosa possesses all genes classically related to methanol metabolism, we propose a peroxisome-independent model for the utilization of methanol by this fungus, which begins with the extracellular oxidation of methanol derived from the demethylation of pectin and finishes in the cytosol.


Asunto(s)
Agaricales/enzimología , Oxidorreductasas de Alcohol/metabolismo , Cacao/microbiología , Espacio Extracelular/enzimología , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Agaricales/genética , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Espacio Extracelular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Metanol/metabolismo , Datos de Secuencia Molecular , Pectinas/metabolismo , Transporte de Proteínas , Alineación de Secuencia
3.
BMC Genomics ; 9: 548, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19019209

RESUMEN

BACKGROUND: The basidiomycete fungus Moniliophthora perniciosa is the causal agent of Witches' Broom Disease (WBD) in cacao (Theobroma cacao). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao's meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle during later stages of infection. M. perniciosa, together with the related species M. roreri, are pathogens of aerial parts of the plant, an uncommon characteristic in the order Agaricales. A genome survey (1.9x coverage) of M. perniciosa was analyzed to evaluate the overall gene content of this phytopathogen. RESULTS: Genes encoding proteins involved in retrotransposition, reactive oxygen species (ROS) resistance, drug efflux transport and cell wall degradation were identified. The great number of genes encoding cytochrome P450 monooxygenases (1.15% of gene models) indicates that M. perniciosa has a great potential for detoxification, production of toxins and hormones; which may confer a high adaptive ability to the fungus. We have also discovered new genes encoding putative secreted polypeptides rich in cysteine, as well as genes related to methylotrophy and plant hormone biosynthesis (gibberellin and auxin). Analysis of gene families indicated that M. perniciosa have similar amounts of carboxylesterases and repertoires of plant cell wall degrading enzymes as other hemibiotrophic fungi. In addition, an approach for normalization of gene family data using incomplete genome data was developed and applied in M. perniciosa genome survey. CONCLUSION: This genome survey gives an overview of the M. perniciosa genome, and reveals that a significant portion is involved in stress adaptation and plant necrosis, two necessary characteristics for a hemibiotrophic fungus to fulfill its infection cycle. Our analysis provides new evidence revealing potential adaptive traits that may play major roles in the mechanisms of pathogenicity in the M. perniciosa/cacao pathosystem.


Asunto(s)
Agaricales/genética , Cacao/microbiología , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Agaricales/patogenicidad , Análisis por Conglomerados , ADN de Hongos/genética , Etiquetas de Secuencia Expresada , Genes Fúngicos , Genómica , Modelos Genéticos , Familia de Multigenes , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
Mol Plant Microbe Interact ; 21(7): 891-908, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18533830

RESUMEN

Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabolite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.


Asunto(s)
Agaricales/genética , Agaricales/patogenicidad , Cacao/microbiología , Agaricales/crecimiento & desarrollo , Agaricales/fisiología , Secuencia de Bases , Carbono/metabolismo , Cartilla de ADN/genética , Elementos Transponibles de ADN/genética , ADN de Hongos/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Curr Microbiol ; 56(4): 363-70, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18172716

RESUMEN

Oxalic acid has been shown as a virulence factor for some phytopathogenic fungi, removing calcium from pectin and favoring plant cell wall degradation. Recently, it was published that calcium oxalate accumulates in infected cacao tissues during the progression of Witches' Broom disease (WBD). In the present work we report that the hemibiotrophic basidiomycete Moniliophthora perniciosa, the causal agent of WBD, produces calcium oxalate crystals. These crystals were initially observed by polarized light microscopy of hyphae growing on a glass slide, apparently being secreted from the cells. The analysis was refined by Scanning electron microscopy and the compositon of the crystals was confirmed by energy-dispersive x-ray spectrometry. The production of oxalate by M. perniciosa was reinforced by the identification of a putative gene coding for oxaloacetate acetylhydrolase, which catalyzes the hydrolysis of oxaloacetate to oxalate and acetate. This gene was shown to be expressed in the biotrophic-like mycelia, which in planta occupy the intercellular middle-lamella space, a region filled with pectin. Taken together, our results suggest that oxalate production by M. perniciosa may play a role in the WBD pathogenesis mechanism.


Asunto(s)
Agaricales/metabolismo , Cacao/microbiología , Oxalato de Calcio/metabolismo , Enfermedades de las Plantas/microbiología , Agaricales/química , Agaricales/enzimología , Agaricales/genética , Secuencia de Aminoácidos , Animales , Proteínas Fúngicas/genética , Hidrolasas/genética , Hifa/química , Microscopía Electrónica de Rastreo , Microscopía de Polarización , Datos de Secuencia Molecular , Alineación de Secuencia , Espectrometría por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA