Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Reprod ; 20(1): e20230017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101424

RESUMEN

The puma population is constantly decreasing, and cloning by somatic cell nuclear transfer can be used to conserve the species. One of the factors determining the success of the development of cloned embryos is the cell cycle stage of the donor cells. We evaluated the effects of full confluency (~100%), serum starvation (0.5% serum), and roscovitine (15 µM) treatments on the cell cycle synchronization in G0/G1 of puma skin-derived fibroblasts by flow cytometric analysis. Also, we assessed the effects of these synchronization methods on morphology, viability, and apoptosis levels using microscopy tools. The results showed that culturing the cells to confluence for 24 h (84.0%), 48 h (84.6%), and 72 h (84.2%) and serum starvation for 96 h (85.4%) yielded a significantly higher percentage of cells arrested in the G0/G1 (P 0.05) phase than cells not subjected to any cell cycle synchronization method (73.9%). Nevertheless, while serum starvation reduced the percentage of viable cells, no difference was observed for the full confluence and roscovitine treatments (P 0.05). Moreover, roscovitine for 12 h (78.6%) and 24 h (82.1%) was unable to synchronize cells in G0/G1 (P 0.05). In summary, full confluency induces puma fibroblast cell cycle synchronization at the G0/G1 stage without affecting cell viability. These outcomes may be valuable for planning donor cells for somatic cell nuclear transfer in pumas.

2.
Anim Reprod ; 19(1): e20210093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371300

RESUMEN

Heterologous in vitro fertilization (IVF) is an important tool for assessing fertility of endangered mammals such as the jaguar, considering difficult access to females for artificial insemination and to obtain homologous oocytes. We aimed to evaluate the fertility of jaguar sperm cryopreserved with different extenders, using domestic cat oocytes to assess the development of hybrid embryos. Semen from four captive jaguars was obtained by electroejaculation. Samples were cryopreserved in powdered coconut water (ACP-117c) or Tris extender containing 20% egg yolk and 6% glycerol. Thawed spermatozoa were resuspended (2.0 × 106 spermatozoa/mL) in IVF medium and co-incubated with cat oocytes matured in vitro for 18 h. Presumptive zygotes were cultured for 7 days. After 48 h, cleavage rate was evaluated, and non-cleaved structures were stained for IVF evaluation. On days 5 and 7, the rate of morula and blastocyst formation was assessed. Data were analyzed using the Fisher exact test (p < 0.05). No difference was observed between ACP-117c and Tris extenders, respectively, for oocytes with 2nd polar body (2/51, 3.9 ± 2.9% vs. 2/56, 3.6 ± 3.1%), pronuclear structures (5/51, 9.8 ± 4.7% vs. 8/56, 14.3 ± 8.0%), and total IVF rates (7/36, 19.4 ± 5.0% vs. 10/37, 27.0 ± 13.8%). All the samples fertilized the oocytes, with 22.9 ± 3.2% (16/70) and 16.7 ± 3.6% (12/72) cleavage of mature oocytes for ACP-117c and Tris extenders, respectively. Morula rates of 4.3 ± 2.3% (3/70) and 5.6 ± 2.2% (4/72) were observed for ACP-117c and Tris, respectively. Only the Tris extender demonstrated blastocyst production (2/12, 16.7 ± 1.5% blastocyst/cleavage). We demonstrated that jaguar ejaculates cryopreserved using ACP-117c and Tris were suitable for IVF techniques, with blastocyst production by ejaculates cryopreserved in Tris. This is a first report of embryos produced in vitro using jaguar sperm and domestic cat oocytes through IVF.

3.
In Vitro Cell Dev Biol Anim ; 54(7): 486-495, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29923165

RESUMEN

Animal cloning is a promising technology for biodiversity conservation, and its success depends on the recovery of nucleus donor cells. Specifically for collared peccaries, found sometimes in regions that are difficult to access, the storage at 4-6°C of skin tissues would be an alternative for the conservation of genetic material. Therefore, we aimed to evaluate different storage periods and the presence of a nutrient medium at 4-6°C on the recovery of somatic cells from the skin of collared peccaries. To analyze cell recovery rates, ear explants were distributed in non-refrigerated samples and samples refrigerated for 10, 30, and 50 d in the absence or presence of nutrient medium. All explants were analyzed by histologically and cultured. Only the fragments stored for 50 d without medium showed an increase in the total thickness of skin. Moreover, increased storage period, regardless of the presence of medium, increased the halo number and reduced the metabolic activity. After culture, only the fragments stored without medium for 50 d did not yield any somatic cells. Cells recovered from explants stored for 10 d showed similar characteristics to these recovered from non-refrigerated explants, regardless of the presence of medium, including the day at which explants achieved attachment and the total time to reach subconfluence. In conclusion, viable cells can be recovered from somatic tissues of collared peccaries stored for up to 50 d in the presence of medium, and tissues refrigerated for up to 10 d in the presence of medium yielded more viable cells.


Asunto(s)
Artiodáctilos , Piel/citología , Conservación de Tejido/veterinaria , Animales , Núcleo Celular , Frío , Medios de Cultivo , Fibroblastos/citología , Conservación de Tejido/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...