Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11242, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755230

RESUMEN

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Asunto(s)
Eritrocitos , Plasmodium falciparum , Proteómica , Proteínas Protozoarias , Eritrocitos/parasitología , Eritrocitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Humanos , Proteómica/métodos , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Ascorbato Peroxidasas/metabolismo , Unión Proteica , Biotinilación , Endonucleasas , Péptidos , Proteínas , Enzimas Multifuncionales
2.
Mar Drugs ; 21(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37623715

RESUMEN

Chagas disease, sleeping sickness and malaria are infectious diseases caused by protozoan parasites that kill millions of people worldwide. Here, we performed in vitro assays of Pa-MAP, Pa-MAP1.9, and Pa-MAP2 synthetic polyalanine peptides derived from the polar fish Pleuronectes americanus toward Trypanosoma cruzi, T. brucei gambiense and Plasmodium falciparum activities. We demonstrated that the peptides Pa-MAP1.9 and Pa-MAP2 were effective to inhibit T. brucei growth. In addition, structural analyses using molecular dynamics (MD) studies showed that Pa-MAP2 penetrates deeper into the membrane and interacts more with phospholipids than Pa-MAP1.9, corroborating the previous in vitro results showing that Pa-MAP1.9 acts within the cell, while Pa-MAP2 acts via membrane lysis. In conclusion, polyalanine Pa-MAP1.9 and Pa-MAP2 presented activity against bloodstream forms of T. b. gambiense, thus encouraging further studies on the application of these peptides as a treatment for sleeping sickness.


Asunto(s)
Lenguado , Tripanosomiasis Africana , Animales , Péptidos/farmacología , Muerte Celular , Peces
3.
Front Cell Infect Microbiol ; 12: 920425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782121

RESUMEN

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Mosquitos Vectores , Proteoma , Proteómica
4.
Front Cell Infect Microbiol ; 11: 708834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395314

RESUMEN

The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.


Asunto(s)
Malaria , Parásitos , Animales , Biología , Calcio/metabolismo , Señalización del Calcio , Eritrocitos , Parásitos/metabolismo , Plasmodium falciparum/genética
5.
Zootaxa ; 4948(1): zootaxa.4948.1.4, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33757035

RESUMEN

Larval ontogeny of the long-whiskered catfish Pimelodus blochii Valenciennes, 1840 is described, providing useful characters for identification and determining the growth pattern throughout its development. Eighty-nine larvae classified in three stages (preflexion, flexion and postflexion) and 30 juveniles were analyzed, totaling 119 individuals. The specimens were collected monthly from January 2013 to May 2019 in the lower Amazon river. A suite of morphological, morphometric, and meristic data was used to describe the stages of development. Three analytical regression models were used: simple linear, quadratic and piecewise regressions. The larvae are characterized by small to moderate eyes, subinferior mouth, and long barbels (maxillary larger than the mental barbels), triangular-shaped adipose fin, and the final part of the intestine reaching half the body. Pigmentation consists of dendritic chromatophores distributed irregularly in the body, ventral region and head, intensifying in the flanks and dorsal region throughout development. The total number of myomeres has a mode of 42 muscle bundles, ranging from 40 to 42 (15 to 16 pre-and 25 to 26 post-anal) and the number of fin segments corresponded to: pectoral = I + 9, pelvic = 6, dorsal = I + 6 and anal = 11-12. All body variables showed discontinuous isometric growth, indicating a deceleration in the structural modeling of the body, between the flexion/post-flexion stages and acceleration in post-flexion/early juvenile period. Precisely when the formation of the fin rays, muscles and organs of the digestive system and ossification are observed, suggesting low morphological variation during ontogenetic development. Pimelodus blochii differs from other congeneric species in the lower Amazon river by meristic characters, which helps to correctly identify individuals in early stages of development.


Asunto(s)
Bagres , Animales , Larva , Músculos , Pigmentación , Ríos
6.
Data Brief ; 21: 1472-1476, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30456272

RESUMEN

This article presents a proteomic dataset generated from a comparative analysis of the exoproteome of Staphylococcus saprophyticus, ATCC 15305, 7108 and 9325 strains. The extract of secreted proteins were obtained after incubation of stationary phase cells in BHI medium. All samples were submitted to nano-ESI-UPLC-MSE, and the spectrum obtained was processed and analyzed by ProteinLynx Global Server (PLGS), Uniprot and Pedant databases, for identification, annotation and functional classification of proteins. Fold changes and protein relative abundances were properly reported. This report is related to the research article entitled "The exoproteome profiles of three Staphylococcus saprophyticus strains reveal diversity in protein secretion contents" (Oliveira et al., 2018). The proteomic data generated have been deposited to the ProteomeXchange Consortium, via the PRIDE partner repository, with a project number PXD008643, https://www.ebi.ac.uk/pride/archive/projects/PXD008643.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...