Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710991

RESUMEN

Papillomaviruses (PVs) have been identified in several animal species, including dogs (canine papillomaviruses, CPVs) and cattle (bovine papillomaviruses, BPVs). Although some BPVs may occasionally infect species other than cattle, to the best of our knowledge, BPVs have not been reported in dogs to date. Herein, we carried out a retrospective phylogenetic study of PVs circulating in dogs from southern Brazil between 2017 and 2022, also investigating possible mixed infections and spillover events. For this, we screened 32 canine papilloma samples by PCR using the degenerate primers FAP59/64 and/or MY09/11, which amplify different regions of the L1 gene; the genomic target often used for PV classification/typing. Out these, 23 PV DNA samples were successfully amplified and sequenced. All PVs amplified by FAP59/64 (n = 22) were classified as CPV-1. On the other hand, PVs amplified by MY09/11 (n = 4) were classified as putative BPV-1. Among these, three samples showed mixed infection by CPV-1 and putative BPV-1. One of the putative BPV-1 detected in co-infected samples had the L1 gene full-sequenced, confirming the gene identity. Furthermore, the phylogenetic classifications from the FAP59/64 and/or MY09/11 amplicons were supported by a careful in silico analysis, which demonstrated that the analysis based on them matches to the classification from the complete L1 gene. Overall, we described CPV-1 circulation in southern Brazil over the years and the potencial BPV infection in dogs (potential spillover event), as well as possible CPV/1/BPV-1 co-infections. Finally, we suggest the analysis of the complete genome of the putative BPVs detected in dogs in order to deepen the knowledge about the PV-host interactions.

2.
Front Immunol ; 15: 1322879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482020

RESUMEN

Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Virus del Orf , Infecciones por Orthomyxoviridae , Animales , Porcinos , Hemaglutininas/genética , Infecciones por Orthomyxoviridae/prevención & control , Subtipo H1N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales , Inmunoglobulina G , Epítopos
3.
Virus Genes ; 59(6): 836-844, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589803

RESUMEN

Whole-genome phylogenetic analysis, the most suitable strategy for subtyping bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2, is not feasible for many laboratories. Consequently, BVDV isolates/strains have been frequently subtyped based on analysis of single genomic regions, mainly the 5' untranslated region (UTR). This approach, however, may lead to inaccurate and/or poorly statistically supported viral classification. Herein, we describe novel primer sets whose amplicons may be easily sequenced and used for BVDV subtyping. Initially, genomic regions previously described as the most suitable targets for BVDV subtyping were analyzed for design of high-coverage primers. The putative amplicons were analyzed in silico for their suitability to reproduce the phylogenetic classification of 118 BVDV-1 and 88 BVDV-2 complete/near-complete genomes (CNCGs) (GenBank). This analysis was also performed considering the region amplifiable by primers HCV90-368, 324-326 and BP189-389 (5'UTR), which have been used for BVDV diagnosis and/or classification. After confirming the agreement between the analyses of our primers' amplicon versus the CNCGs, we optimized the RT-PCRs and evaluated their performance for amplification of BVDV isolates/strains (n = 35 for BVDV-1; n = 33 for BVDV-2). Among the potential targets for BVDV subtyping, we designed high-coverage primers for NS3-NS4A (BVDV-1) (526 bp amplicon) and NS5B (BVDV-2) (728 bp). The classification based on these regions fully reproduced the subtyping of all CNCGs. On the other hand, subtyping based on the putative amplicons from primers HCV90-368, 324-326 and BP189-389 showed disagreements in relation the CNCG analysis. The NS3-NS4A and NS5B primers also allowed the amplification of all BVDV isolates/strains tested. Finally, we suggest the use of these primers in future phylogenetic and epidemiological studies of BVDVs.


Asunto(s)
Diarrea Mucosa Bovina Viral , Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina Tipo 2 , Virus de la Diarrea Viral Bovina , Animales , Bovinos , Virus de la Diarrea Viral Bovina Tipo 1/genética , Virus de la Diarrea Viral Bovina Tipo 2/genética , Filogenia , Genómica , Regiones no Traducidas 5'/genética , Virus de la Diarrea Viral Bovina/genética
4.
Arch Virol ; 168(2): 52, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609926

RESUMEN

Bovine papillomaviruses (BPVs) exhibit a high degree of genetic variability, and several viral types have been identified based on analysis of the L1 gene. The L1 is the main capsid protein and the main target for neutralizing antibodies. We performed a retrospective study on BPVs circulating in Rio Grande do Sul state, Southern Brazil, in 2016-2020. DNA from 43 bovine papilloma samples were amplified using two degenerate primer sets - FAP59/64 and MY09/11 - targeting the L1 region, and analyzed for phylogeny, mixed BPV infections (coinfections) and amino acid (aa) sequences. We also performed an in silico analysis with 114 BPV L1 sequences from the GenBank database to assess the agreement between the phylogeny obtained based on complete L1 sequences versus that based on the region amplified using the FAP59/64 and MY09/11 primer sets. Considering single and coinfections, we identified 31 BPV-1 (31/43; 72.1%), 27 BPV-2 (27/43; 62.8%) and 4 BPV-6 (4/43; 9.3%). Coinfections with BPV-1 and BPV-2 were observed in 61.3% of the samples. Our results are supported by in silico analyses that demonstrate that the classification using FAP59/64 or MY09/11 matches the complete L1 results, except for BPV-17 and -18, which may be mistakenly classified depending on the primers used. Furthermore, we found unique or rare amino acids in at least one L1 sequence of each BPV type identified in our study, some of which have been identified previously in papillomavirus epitopes, suggesting immune-mediated selection. Finally, our study provides an overview of BPVs circulating in Southern Brazil over the last five years and point to the combined use of primers FAP59/64 and MY09/11 for analysis of BPV coinfections and putative epitopes.


Asunto(s)
Papillomavirus Bovino 1 , Enfermedades de los Bovinos , Coinfección , Infecciones por Papillomavirus , Animales , Bovinos , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/veterinaria , Filogenia , Brasil/epidemiología , Aminoácidos/genética , Estudios Retrospectivos , ADN Viral/genética , Papillomaviridae/genética , Enfermedades de los Bovinos/epidemiología
5.
Arch Virol ; 167(12): 2545-2553, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36104508

RESUMEN

Bovine pestiviruses are members of the species Pestivirus A (bovine viral diarrhea virus 1, BVDV-1), Pestivirus B (BVDV-2) or Pestivirus H (HoBiPeV). To date, BVDV-2 isolates/strains have been classified into three subtypes (a-c) by phylogenetic analysis, and an additional subtype (d) has been proposed based on 5' untranslated region (UTR) secondary structures. In a previous study, we identified some BVDV-2 sequences in the GenBank database that could not be classified as subtype a, b or c by phylogenetic analysis of their genomes, UTRs or individual genes. Here, we performed a detailed study of these sequences and assessed whether they might represent a distinct BVDV-2 subtype. Initially, we collected 85 BVDV-2 complete/near-complete genomes (CNCGs) from GenBank and performed a "proof of equivalence" between phylogenetic analyses based on CNCGs and open reading frames (ORFs), which showed that ORFs may be reliably used as a reference target for BVDV-2 phylogeny, allowing us to increase our dataset to 139 sequences. Among these, we found seven sequences that could not be classified as BVDV-2a-c. The same was observed in the phylogenetic analysis of CNCGs and viral genes. In addition, the seven non-BVDV-2a-c sequences formed a distinct cluster in all phylogenetic trees, which we propose to term BVDV-2e. BVDV-2e also showed 44 amino acid changes compared to BVDV-2a-c, 20 of which are in well-defined positions. Importantly, an additional phylogenetic analysis including BVDV-2d and a pairwise comparison of BVDV-2e and BVDV-2d sequences also supported the difference between these subtypes. Finally, we propose the recognition of BVDV-2e as a distinct BVDV-2 subtype and encourage its inclusion in future phylogenetic analyses to understand its distribution and evolution.


Asunto(s)
Diarrea Mucosa Bovina Viral , Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina Tipo 2 , Virus de la Diarrea Viral Bovina , Pestivirus , Animales , Bovinos , Virus de la Diarrea Viral Bovina Tipo 2/genética , Filogenia , Virus de la Diarrea Viral Bovina Tipo 1/genética , Virus de la Diarrea Viral Bovina/genética , Pestivirus/genética , Regiones no Traducidas 5'/genética
6.
Nat Prod Res ; 36(5): 1321-1326, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33356570

RESUMEN

The objective of this work was to produce and characterise nanoemulsions containing tucumã extract and to evaluate the performance of the nanostructure and the free compound regarding antitumor activity, cytotoxicity, and oxidative metabolism in NB4/APL cells. The nanoemulsions showed adequate physicochemical characteristics (average size approx. 200 nm, polydispersity index less than 0.3, negative zeta potential and acid pH) maintained stable up to 90 days of storage in refrigeration condition. The nanoformulations did not present protein corona formation. Blank nanoemulsion treatments showed moderate toxicity. Furthermore, the nanoemulsion loaded with extract showed better antileukemic results than the free extract. However, nanoemulsions can be promising carriers of natural compounds, emphasising their biological properties and constituting alternatives in treating diseases.


Asunto(s)
Arecaceae , Nanoestructuras , Antioxidantes/química , Emulsiones/química , Nanoestructuras/química
7.
Infect Genet Evol ; 92: 104891, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945882

RESUMEN

Bovine viral diarrhea virus-1 (BVDV-1, Pestivirus A) and BVDV-2 (Pestivirus B) have been clustered into 21 and 4 subtypes, respectively. This genetic diversity, in addition to the lack of consensus on which genomic region to use for BVDV subtyping, has resulted in conflicting classifications depending on the target analyzed. Here, we investigated which genes or UTRs would reproduce the phylogeny obtained by complete genome (CG) analyses. The study was carried out with 91 (BVDV-1) and 85 (BVDV-2) CG available on GenBank database. The viruses were subtyped by analyzing their CG, as well as their individual genes and UTRs (complete 3' and 5'UTRs, and partial 5'UTR); and the phylogeny results were compared to each other. The sequences were aligned using the ClustalW multiple method (BioEdit Alignment Editor software, v.7.0.5.3) and the phylogenetic analyses were performed by the Maximum Likelihood method (MEGA-X software, v.10.2.4), with 1000 bootstrap replicates. The best analysis model for each gene/UTR was defined using the jModelTest software. The geodesic distance between the CG (reference) and individual genes/UTRs trees was also calculated (TreeCmp software, v.2.0). In general, 3'UTR-based analyses, followed by 5'UTR, presented the least reliable subtyping results. Regarding BVDV-1, phylogeny based on C, Erns, E1, E2, p7, NS2, NS3, NS4B, NS5A and NS5B was consistent with that of CG. In contrast, analyses performed with individual BVDV-2 genes showed at least one different clustering from the phylogeny based on the CG. After analyzing the geodesic distance between the CG and genes/UTRs trees, we observed that NS4B (for BVDV-1) and NS5A (BVDV-2) presented the closest topology and edge length to the CG analyses. Finally, comparing the phylogeny performed with the CG and the genes/UTRs, as well as the geodesic distance between them, we understand that NS4B and NS5A represent the most suitable targets for BVDV-1 and -2 subtyping, respectively, and may be considered in future phylogenetic studies.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1/genética , Virus de la Diarrea Viral Bovina Tipo 2/genética , Genes Virales , Filogenia , Virus de la Diarrea Viral Bovina Tipo 1/clasificación , Virus de la Diarrea Viral Bovina Tipo 2/clasificación , Secuenciación Completa del Genoma
8.
Arch Virol ; 166(4): 1163-1170, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33554289

RESUMEN

The envelope glycoprotein E2 of pestiviruses is a major target for neutralizing antibodies. In this study, we analyzed the E2 DA domain of 43 pestiviruses from Southern Brazil. The isolates were identified as Bovine viral diarrhea virus (BVDV) subtypes 1a and 1b or BVDV-2b. Compared to reference strains, the BVDV-1 and -2 isolates had four and two mutations in the DA domain, respectively. All BVDV-2 isolates had a deletion of residues 724 and 725. All mutated amino acids in the BVDV isolates had the same aa substitution, and all were in previously identified antibody binding sites. It is possible that an immunity-mediated selection is acting on the pestiviruses circulating in Southern Brazil.


Asunto(s)
Virus de la Diarrea Viral Bovina/genética , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Proteínas del Envoltorio Viral/genética , Animales , Antígenos Virales/genética , Sitios de Unión de Anticuerpos/genética , Diarrea Mucosa Bovina Viral/epidemiología , Diarrea Mucosa Bovina Viral/virología , Brasil/epidemiología , Bovinos , Virus de la Diarrea Viral Bovina/clasificación , Virus de la Diarrea Viral Bovina/inmunología , Mutación , Filogenia , ARN Viral/genética , Proteínas del Envoltorio Viral/inmunología
9.
J Virol Methods ; 288: 114007, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33130151

RESUMEN

Real-time reverse transcription-polymerase chain reaction (RT-qPCR) is considered the "gold standard" for the direct diagnosis of SARS-CoV-2 infections. However, routine diagnosis by RT-qPCR is a limitation for many laboratories, mainly due to the infrastructure and/or disproportionate relationship between demand and supply of inputs. In this context, and to increase the diagnostic coverage of SARS-CoV-2 infections, we describe an alternative, sensitive and specific one-step end-point RT-PCR for the detection of the SARS-CoV-2 E gene. The performance of the RT-PCR was evaluated in 43 clinical samples, of which 10 and 33 were previously identified as negative and positive, respectively, by RT-qPCR. Among the positive samples, 15 and 18 were from asymptomatic and symptomatic individuals, respectively. Here, 32/33 of the positive samples in the RT-qPCR, including from asymptomatic individuals, were found positive in the RT-PCR (Ct 15.94-34.92). The analytical sensitivity of the assay was about 7.15-9 copies of vRNA/µL, and nonspecific amplifications were not observed in SARS-CoV-2 negative samples. Importantly, the RT-PCR reactions were performed in a 10 µL final volume. Finally, considering specificity, analytical sensitivity and cost reduction, we believe that the RT-PCR platform described here may be a viable option for the diagnostic of SARS-CoV-2 infections in laboratories in which RT-qPCR is not available.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Humanos , ARN Viral , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
11.
Naunyn Schmiedebergs Arch Pharmacol ; 392(9): 1131-1140, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31079199

RESUMEN

The glycerol monolaurate (GML) is a surfactant used in the food industry and has potent antimicrobial activity against many microorganisms; however, the use of GML is not expanded due its high melting point and poor solubility in water. The aim of the study was to produce, characterize, and evaluate in vitro the cytotoxicity of GML and GML nanocapsules. The GML nanocapsules were produced and characterized by a mean diameter, zeta potential, and polydispersity index. The cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, thiobarbituric acid reactive substances (TBARS), and hemolytic activity. The genotoxicity was verified by comet assay. The physicochemical parameters showed a mean diameter of 192.5 ± 2.8 nm, a polydispersity index of 0.061 ± 0.018, and a zeta potential about - 21.9 ± 1 mV. The viability test demonstrated the protector effect of GML nanocapsule compared with the GML on peripheral blood mononuclear cells (PBMC) and VERO cells (isolated from kidney epithelial cells extracted from an African green monkey). A reduction in lipid peroxidation and lactate dehydrogenase release in GML nanocapsule-exposed cells compared with GML treated cells was observed. The damage on erythrocytes was addressed in treatment with GML, while the treatment with GML nanocapsules did not cause an effect. Moreover, the comet assay showed that the GML-caused genotoxicity and GML nanocapsules do not demonstrate damage. The study showed the reduction of toxicity of GML nanocapsules by many methods used in antimicrobial therapy.


Asunto(s)
Antiinfecciosos/toxicidad , Lauratos/toxicidad , Monoglicéridos/toxicidad , Nanocápsulas/toxicidad , Tensoactivos/toxicidad , Animales , Antiinfecciosos/química , Compuestos de Bifenilo/química , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Ensayo Cometa , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/metabolismo , Lauratos/química , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Monoglicéridos/química , Nanocápsulas/química , Picratos/química , Tensoactivos/química , Células Vero
12.
Arch Virol ; 164(5): 1361-1369, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30859474

RESUMEN

Carnivore protoparvovirus 1 (canine parvovirus 2, CPV-2) has undergone a rapid evolution through mutations in the capsid protein VP2, giving rise to variants associated with unique clinicopathological and immunological features. VP2 is a major capsid protein involved in key steps of virus biology, including interactions with cellular receptors and with the immune system. This study analyzed the complete VP2 coding sequence of 38 CPV-2 isolates obtained from dogs with clinical parvovirosis in southern Brazil. Amplicons encompassing the whole VP2 coding region were subjected to nucleotide sequencing, and predicted amino acid sequences were analyzed to identify molecular markers of viral variants. Viral variants were classified as CPV-2a, -2b or -2c based on the presence of the amino acid Asn, Asp or Glu, respectively, at VP2 residue 426. Amino acid sequence analysis identified 20 CPV-2c and four CPV-2b isolates. Eleven viruses were identified as New CPV-2a, two as New CPV-2b, and one resembled the original CPV-2 and was designated CPV-2-like. In addition to the mutation at amino acid 426 of VP2, new 2a/2b variants containing a Ser297Ala mutation at residue 297 were identified. CPV-2-like samples contained some mutations that were also present in the original CPV-2 isolate, including as Leu, Thr, Ala and Asp at residues 87, 101, 300 and 305, respectively. The New CPV-2a isolates had three additional mutations (Phe267Tyr, Tyr324Ile and Thr440Ala) associated with selective pressure and development of disease in vaccinated dogs. The resemblance of the CPV-2-like isolate to CPV-2 suggests reemergence of CPV-2 and/or evolution from vaccine strains. Phylogenetic analysis grouped the variants with their respective reference strains, in general, according to amino acid changes. These results demonstrate the high VP2 diversity of CPV circulating in dogs in southern Brazil and indicate the emergence of new viral variants that differ markedly from the current vaccine strains.


Asunto(s)
Proteínas de la Cápside/genética , Enfermedades de los Perros/virología , Variación Genética/genética , Infecciones por Parvoviridae/veterinaria , Parvovirus Canino/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Secuencia de Bases , Brasil , ADN Viral/genética , Perros , Parvovirus Canino/clasificación , Parvovirus Canino/aislamiento & purificación , Filogenia , Isoformas de Proteínas/genética , Análisis de Secuencia de ADN , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...