Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc Plant Biol ; 2(3): 221-239, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31725972

RESUMEN

Sugarcane (Saccharum spp.) is a monocotyledonous semi-perennial C4 grass of the Poaceae family. Its capacity to accumulate high content of sucrose and biomass makes it one of the most important crops for sugar and biofuel production. Conventional methods of sugarcane breeding have shown several limitations due to its complex polyploid and aneuploid genome. However, improvement by biotechnological engineering is currently the most promising alternative to introduce economically important traits. In this work, we present an improved protocol for Agrobacterium tumefaciens-mediated transformation of commercial sugarcane hybrids using immature top stalk-derived embryogenic callus cultures. The callus cultures are transformed with preconditioned A. tumefaciens carrying a binary vector that encodes expression cassettes for a gene of interest and the bialaphos resistance gene (bar confers resistance to glufosinate-ammonium herbicide). This protocol has been used to successfully transform a commercial sugarcane cultivar, SP80-3280, highlighting: (i) reduced recalcitrance and oxidation; (ii) high yield of embryogenic callus; (iii) improved selection; and (iv) shoot regeneration and rooting of the transformed plants. Altogether, these improvements generated a transformation efficiency of 2.2%. This protocol provides a reliable tool for a routine procedure for sugarcane improvement by genetic engineering. © 2017 by John Wiley & Sons, Inc.

2.
Biotechnol Biofuels ; 9: 153, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27453728

RESUMEN

BACKGROUND: Second-generation ethanol (2G-bioethanol) uses lignocellulosic feedstocks for ethanol production. Sugarcane is one among the most suitable crops for biofuel production. Its juice is extracted for sugar production, while sugarcane bagasse, straw, and senescing leaves are considered industrial waste. Senescence is the age-dependent deterioration of plant cells, ultimately leading to cell death and completion of the plant life cycle. Because senescing leaves may also be used for biofuel production, understanding the process of natural senescence, including remobilization of nutrients and its effect on cell walls can provide useful information for 2G-bioethanol production from sugarcane leaves. RESULTS: The natural senescence process in leaves of the commercial sugarcane cultivar RB867515 was investigated. Senescence was characterized by strong reduction in photosynthetic pigments content, remobilization of the nutrients N, P, K, B, Cu, Fe, and Zn, and accumulation of Ca, S, Mg, B, Mn, and Al. No significant changes in the cell-wall composition occurred, and only small changes in the expression of cell wall-related genes were observed, suggesting that cell walls are preserved during senescence. Senescence-marker genes, such as SAG12-like and XET-like genes, were also identified in sugarcane and found to be highly expressed. CONCLUSIONS: Our study on nutrient remobilization under senescence in a vigorous sugarcane cultivar can contribute to the understanding on how nutrient balance in a high-yielding crop is achieved. In general, neutral monosaccharide profile did not change significantly with leaf senescence, suggesting that senescing leaves of sugarcane can be as a feedstock for biofuel production using pretreatments established for non-senescing leaves without additional efforts. Based on our findings, the potential biotechnological applications for the improvement of sugarcane cultivars are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA