Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 165: 110206, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758494

RESUMEN

Cellulose is the most abundant natural polymer on Earth, representing an attractive feedstock for bioproducts and biofuel production. Cellulases promote the depolymerization of cellulose, generating short oligosaccharides and glucose, which are useful in biotechnological applications. Among the classical cellulases, those from glycoside hydrolase family 5 (GH5) are one of the most abundant in Nature, displaying several modular architectures with other accessory domains attached to its catalytic core, such as carbohydrate-binding modules (CBMs), Ig-like, FN3-like, and Calx-ß domains, which can influence the enzyme activity. The metagenome-derived endoglucanase CelE2 has in its modular architecture an N-terminal domain belonging to the GH5 family and a C-terminal domain with a high identity to the Calx-ß domain. In this study, the GH5 and the Calx-ß domains were subcloned and heterologously expressed in E. coli, to evaluate the structural and functional properties of the individualized domains of CelE2. Thermostability analysis by circular dichroism (CD) revealed a decrease in the denaturation temperature values around 4.6 °C for the catalytic domain (CelE21-381) compared to CelE2 full-length. The CD analyses revealed that the Calx-ß domain (CelE2382-477) was unfolded, suggesting that this domain requires to be attached to the catalytic core to become structurally stable. The three-dimensional structure of the catalytic domain CelE21-381 was determined at 2.1 Å resolution, showing a typical (α/ß)8-barrel fold and a narrow active site compared to other cellulases from the same family. The biochemical characterization showed that the deletion of the Calx-ß domain increased more than 3-fold the activity of the catalytic domain CelE21-381 towards the insoluble substrate Avicel. The main functional properties of CelE2, such as substrate specificity, optimal pH and temperature, thermal stability, and activation by CaCl2, were not altered after the deletion of the accessory domain. Furthermore, the Small Angle X-ray Scattering (SAXS) analyses showed that the addition of CaCl2 was beneficial CelE21-381 protein solvency. This work contributed to fundamental concepts about the structure and function of cellulases, which are useful in applications involving lignocellulosic materials degradation into food and feedstuffs and biofuel production.


Asunto(s)
Celulasa , Glicósido Hidrolasas , Glicósido Hidrolasas/metabolismo , Celulasa/metabolismo , Metagenoma , Escherichia coli/genética , Escherichia coli/metabolismo , Biocombustibles , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Celulosa/metabolismo , Especificidad por Sustrato
2.
Process Biochem ; 125: 141-153, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36643388

RESUMEN

Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/ß subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for ß-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin ß-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.

3.
J Mol Med (Berl) ; 100(2): 285-301, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741638

RESUMEN

The risk of severe COVID-19 increases with age as older patients are at highest risk. Thus, there is an urgent need to identify how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with blood components during aging. We investigated the whole blood transcriptome from the Genotype-Tissue Expression (GTEx) database to explore differentially expressed genes (DEGs) translated into proteins interacting with viral proteins during aging. From 22 DEGs in aged blood, FASLG, CTSW, CTSE, VCAM1, and BAG3 were associated with immune response, inflammation, cell component and adhesion, and platelet activation/aggregation. Males and females older than 50 years old overexpress FASLG, possibly inducing a hyperinflammatory cascade. The expression of cathepsins (CTSW and CTSE) and the anti-apoptotic co-chaperone molecule BAG3 also increased throughout aging in both genders. By exploring single-cell RNA-sequencing data from peripheral blood of SARS-CoV-2-infected patients, we found FASLG and CTSW expressed in natural killer cells and CD8 + T lymphocytes, whereas BAG3 was expressed mainly in CD4 + T cells, naive T cells, and CD14 + monocytes. In addition, T cell exhaustion was associated with increased expression of CCL4L2 and DUSP4 over blood aging. LAG3, PDCD1, TIGIT, VCAM1, HLA-DRA, and TOX also increased in individuals aged 60-69 years old; conversely, the RGS2 gene decreased with aging. We further identified a distinct gene expression profile associated with type I interferon signaling following blood aging. These results revealed changes in blood molecules potentially related to SARS-CoV-2 infection throughout aging, emphasizing them as therapeutic candidates for aggressive clinical manifestation of COVID-19. KEY MESSAGES: • Prediction of host-viral interactions in the whole blood transcriptome during aging. • Expression levels of FASLG, CTSW, CTSE, VCAM1, and BAG3 increase in aged blood. • Blood interactome reveals targets involved with immune response, inflammation, and blood clots. • SARS-CoV-2-infected patients with high viral load showed FASLG overexpression. • Gene expression profile associated with T cell exhaustion and type I interferon signaling were affected with blood aging.


Asunto(s)
Envejecimiento/sangre , Proteínas Sanguíneas/análisis , COVID-19/genética , SARS-CoV-2/patogenicidad , Transcriptoma , Adulto , Anciano , Envejecimiento/genética , Sangre/metabolismo , Análisis Químico de la Sangre , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/virología , COVID-19/sangre , COVID-19/inmunología , COVID-19/fisiopatología , Fenómenos Fisiológicos Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/virología , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Humanos , Inmunidad Innata/genética , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Protein Sci ; 31(1): 251-258, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761467

RESUMEN

SAXSMoW (SAXS Molecular Weight) is an online platform widely used over the past few years for determination of molecular weights of proteins in dilute solutions. The scattering intensity retrieved from small-angle X-ray scattering (SAXS) raw data is the sole input to SAXSMoW for determination of molecular weights of proteins in liquid. The current updated SAXSMoW version 3.0 determines the linear dependence of the true protein volume on their apparent protein volume, based on SAXS curves calculated for 67,000 protein structures selected from the Protein Data Bank. SAXSMoW 3.0 was tested against 43 experimental SAXS scattering curves from proteins with known molecular weights. Our results demonstrate that most of the molecular weights determined for the nonglycosylated and also for the glycosylated proteins are in good agreement with their expected molecular weights. Additionally, the average discrepancies between the calculated molecular weights and their nominal values for glycosylated proteins are similar to those for nonglycosylated ones.


Asunto(s)
Bases de Datos de Proteínas , Simulación de Dinámica Molecular , Proteínas/química , Dispersión del Ángulo Pequeño , Programas Informáticos , Difracción de Rayos X , Peso Molecular
5.
J Mol Biol ; 433(23): 167279, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34624294

RESUMEN

Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/metabolismo , Unión Proteica , ARN Mensajero/genética
6.
Int J Biol Macromol ; 191: 255-266, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34547312

RESUMEN

Phospholipases A2 (PLA2s) are found in almost every venomous snake family. In snakebites, some PLA2s can quickly cause local myonecrosis, which may lead to permanent sequelae if antivenom is administered belatedly. They hydrolyse phospholipids in membranes through a catalytic calcium ions-dependent mechanism. BthTX-II is a basic PLA2 and the second major component in the venom of Bothrops jararacussu. Herein, using the software SEQUENCE SLIDER, which integrates crystallographic, mass spectrometry and genetic data, we characterized the primary, tertiary and quaternary structure of two BthTX-II variants (called a and b), which diverge in 7 residues. Crystallographic structure BthTX-IIa is in a Tense-state with its distorted calcium binding loop buried in the dimer interface, contrarily, the novel BthTX-IIb structure is a monomer in a Relax-state with a fatty acid in the hydrophobic channel. Structural data in solution reveals that both variants are monomeric in neutral physiological conditions and mostly dimeric in an acidic environment, being catalytic active in both situations. Therefore, we propose two myotoxic mechanisms for BthTX-II, a catalytic one associated with the monomeric assembly, whereas the other has a calcium independent activity related to its C-terminal region, adopting a dimeric conformation similar to PLA2-like proteins.


Asunto(s)
Venenos de Crotálidos/química , Fosfolipasas A2 Grupo II/química , Multimerización de Proteína , Sitios de Unión , Calcio/metabolismo , Venenos de Crotálidos/metabolismo , Fosfolipasas A2 Grupo II/metabolismo , Simulación de Dinámica Molecular , Unión Proteica
7.
Int J Biol Macromol ; 137: 205-214, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31229549

RESUMEN

The serine/arginine-rich protein kinase 2 (SRPK2) has been reported as upregulated in several cancer types, with roles in hallmarks such as cell migration, growth, and apoptosis. These findings have indicated that SRPK2 is a promising emerging target in drug discovery initiatives. Although high-resolution models are available for SRPK2 (PDB 2X7G), they have been obtained with a heavily truncated recombinant protein version (~50% of the primary structure), due to the presence of long intrinsically unstructured regions. In the present work, we sought to characterize the structure of a full-length recombinant version of SRPK2 in solution. Low-resolution Small-Angle X-ray Scattering data were obtained for both versions of SRPK2. The truncated ΔNΔS-SRPK2 presented a propensity to dimerize at higher concentrations whereas the full-length SRPK2 was mainly found as dimers. The hydrodynamic behavior of the full-length SRPK2 was further investigated by analytical size exclusion chromatography and sedimentation velocity analytical ultracentrifugation experiments. SRPK2 behaved as a monomer-dimer equilibrium and both forms have an elongated shape in solution, pointing to a stretched-to-closed tendency among the conformational plasticity observed. Taken together, these findings allowed us to define unique structural features of the SRPK2 within SRPK family, characterized by its flexible regions outside the bipartite kinase domain.


Asunto(s)
Hidrodinámica , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Soluciones , Análisis Espectral , Relación Estructura-Actividad
8.
Biotechnol Rep (Amst) ; 23: e00326, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30984571

RESUMEN

Enzymes are essential in many biological processes, including second-generation ethanol production. However, enzymes are one of the main expenses for the industrial process in these days. Several studies have been done to maximize cost savings, however, many processes are still economically infeasible. In this study, we report the synthesis of a suspension of lignocresol for recycling or reuse of enzymes in bioprocesses. In this way, it was performed the adsorption assays between lignocresol and ß-glucosidases from Thermotoga petrophila, belonging to the families GH1 and GH3, for the development of a lignocresol-enzyme complex. Our results show that lignocresol maintains greater adsorptive capacity for ß-glucosidases than lignin. This capacity can be explained both by its great hydrophobicity and also by electrostatic characteristics. Therefore, all these results demonstrate good adsorption of the enzymes to the lignocresol, demonstrating great potential for enzymatic recycling.

9.
PLoS One ; 14(2): e0212629, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30802241

RESUMEN

Ferulic acid (FA), a low-molecular weight aromatic compound derived from lignin, represents a high-value molecule, used for applications in the cosmetic and pharmaceutical industries. FA can be further enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. In several organisms, these transformations often start with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases (Fcs). In this context, these enzymes are of biotechnological interest for conversion of lignin-derived FA into high value chemicals. In this study, we describe the first structural characterization of a prokaryotic Fcs, named FCS1, isolated from a lignin-degrading microbial consortium. The FCS1 optimum pH and temperature were 9 and 37°C, respectively, with Km of 0.12 mM and Vmax of 36.82 U/mg. The circular dichroism spectra indicated a notable secondary structure stability at alkaline pH values and high temperatures. This secondary structure stability corroborates the activity data, which remains high until pH 9. The Small Angle X-Ray Scattering analyses resulted on the tertiary/quaternary structure and the low-resolution envelope in solution of FCS1, which was modeled as a homodimer using the hyperthermophilic nucleoside diphosphate-forming acetyl-CoA synthetase from Candidatus Korachaeum cryptofilum. This study contributes to the field of research by establishing the first biophysical and structural characterization for Fcs, and our data may be used for comparison against novel enzymes of this class that to be studied in the future.


Asunto(s)
Archaea , Proteínas Arqueales , Coenzima A Ligasas , Lignina/química , Metagenoma , Microbiología del Suelo , Archaea/enzimología , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Benzaldehídos/química , Benzaldehídos/metabolismo , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Dominios Proteicos , Suelo
10.
Appl Microbiol Biotechnol ; 103(3): 1275-1287, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30547217

RESUMEN

Lignocellulose feedstock constitutes the most abundant carbon source in the biosphere; however, its recalcitrance remains a challenge for microbial conversion into biofuel and bioproducts. Bacillus licheniformis is a microbial mesophilic bacterium capable of secreting a large number of glycoside hydrolase (GH) enzymes, including a glycoside hydrolase from GH family 9 (BlCel9). Here, we conducted biochemical and biophysical studies of recombinant BlCel9, and its low-resolution molecular shape was retrieved from small angle X-ray scattering (SAXS) data. BlCel9 is an endoglucanase exhibiting maximum catalytic efficiency at pH 7.0 and 60 °C. Furthermore, it retains 80% of catalytic activity within a broad range of pH values (5.5-8.5) and temperatures (up to 50 °C) for extended periods of time (over 48 h). It exhibits the highest hydrolytic activity against phosphoric acid swollen cellulose (PASC), followed by bacterial cellulose (BC), filter paper (FP), and to a lesser extent carboxymethylcellulose (CMC). The HPAEC-PAD analysis of the hydrolytic products demonstrated that the end product of the enzymatic hydrolysis is primarily cellobiose, and also small amounts of glucose, cellotriose, and cellotetraose are produced. SAXS data analysis revealed that the enzyme adopts a monomeric state in solution and has a molecular mass of 65.8 kDa as estimated from SAXS data. The BlCel9 has an elongated shape composed of an N-terminal family 3 carbohydrate-binding module (CBM3c) and a C-terminal GH9 catalytic domain joined together by 20 amino acid residue long linker peptides. The domains are closely juxtaposed in an extended conformation and form a relatively rigid structure in solution, indicating that the interactions between the CBM3c and GH9 catalytic domains might play a key role in cooperative cellulose biomass recognition and hydrolysis.


Asunto(s)
Bacillus licheniformis/enzimología , Bacillus licheniformis/metabolismo , Celulasa/metabolismo , Glicósido Hidrolasas/metabolismo , Lignina/metabolismo , Catálisis , Celobiosa/biosíntesis , Celulosa/análogos & derivados , Celulosa/biosíntesis , Glucosa/biosíntesis , Concentración de Iones de Hidrógeno , Dispersión del Ángulo Pequeño , Tetrosas/biosíntesis , Triosas/biosíntesis , Difracción de Rayos X
11.
Sci Rep ; 8(1): 10317, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985425

RESUMEN

Local myonecrosis is the main event resulting from snakebite envenomation by the Bothrops genus and, frequently, it is not efficiently neutralized by antivenom administration. Proteases, phospholipases A2 (PLA2) and PLA2-like toxins are found in venom related to muscle damage. Functional sites responsible for PLA2-like toxins activity have been proposed recently; they consist of a membrane docking-site and a membrane rupture-site. Herein, a combination of functional, biophysical and crystallographic techniques was used to characterize the interaction between suramin and MjTX-I (a PLA2-like toxin from Bothrops moojeni venom). Functional in vitro neuromuscular assays were performed to study the biological effects of the protein-ligand interaction, demonstrating that suramin neutralizes the myotoxic effect of MjTX-I. Calorimetric assays showed two different binding events: (i) inhibitor-protein interactions and (ii) toxin oligomerization processes. These hypotheses were also corroborated with dynamic light and small angle X-ray scattering assays. The crystal structure of the MjTX-I/suramin showed a totally different interaction mode compared to other PLA2-like/suramin complexes. Thus, we suggested a novel myotoxic mechanism for MjTX-I that may be inhibited by suramin. These results can further contribute to the search for inhibitors that will efficiently counteract local myonecrosis in order to be used as an adjuvant of conventional serum therapy.


Asunto(s)
Fosfolipasas A2/metabolismo , Proteínas de Reptiles/metabolismo , Suramina/química , Animales , Sitios de Unión , Bothrops , Venenos de Crotálidos/metabolismo , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Fosfolipasas A2/química , Estructura Cuaternaria de Proteína , Proteínas de Reptiles/química , Dispersión del Ángulo Pequeño , Suramina/metabolismo , Termodinámica
12.
Int J Biol Macromol ; 99: 384-393, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28238914

RESUMEN

Endoglucanases are key enzymes in the degradation of cellulose, the most abundant polymer on Earth. The aim of this work was to perform the biochemical and biophysical characterization of CelE2, a soil metagenome derived endoglucanase. CelE2 harbors a conserved domain from glycoside hydrolase family 5 (GH5) and a C-terminal domain with identity to Calx-beta domains. The recombinant CelE2 displayed preference for hydrolysis of oat beta-glucan, followed by lichenan and carboxymethyl cellulose. Optimum values of enzymatic activity were observed at 45°C and pH 5.3, and CelE2 exhibited considerable thermal stability at 40°C for up to 360min. Regarding the cleavage pattern on polysaccharides, the release of oligosaccharides with a wide degree of polymerization indicated a characteristic of endoglucanase activity. Furthermore, the analysis of products generated from the cleavage of cellooligosaccharides suggested that CelE2 exhibited transglycosylation activity. Interestingly, the presence of CaCl2 positively affect CelE2, including in the presence of surfactants. SAXS experiments provided key information on the effect of CaCl2 on the stability of CelE2 and dummy atom and rigid-body models were generated. To the best of our knowledge this is the first biochemical and biophysical characterization of an endoglucanase from family GH5 displaying this unconventional modular organization.


Asunto(s)
Fenómenos Biofísicos , Celulasa/química , Celulasa/metabolismo , Metagenoma , Celulasa/genética , Ácido Edético/farmacología , Glicosilación , Metales/farmacología , Filogenia , Desnaturalización Proteica , Dominios Proteicos , Especificidad por Sustrato , Tensoactivos/farmacología , Temperatura
13.
Enzyme Microb Technol ; 91: 1-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27444323

RESUMEN

Endoglucanases are the main cellulolytic enzymes secreted by the bacterium Xanthomonas campestris pv. campestris (Xcc). The major endoglucanase exported by this bacterium into an external milieu is an enzyme XccCel5A, which belongs to GH5 family subfamily 1 and is encoded by the gene engXCA. We purified XccCel5A using ammonium sulfate precipitation followed by size exclusion chromatography and identified it by zymogram analysis. Circular dichroism and fluorescence spectroscopy studies showed that XccCel5A is stable in a wide pH range and up to about 55°C and denatures at the higher temperatures. The optimal conditions for enzyme activity were identified as T=45°C and pH=7.0. Under the optimum conditions the catalytic efficiency (kcat/KM) of the enzyme was determined as 5.16×10(4)s(-1)M(-1) using carboxymethylcellulose (CMC) as a substrate. Our SAXS studies revealed extended tadpole-shape molecular assembly, typical for cellulases, and allowed to determine an overall shape of the enzyme and a relative position of the catalytic and cellulose binding domains.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulasa/química , Celulasa/metabolismo , Xanthomonas campestris/enzimología , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Dominio Catalítico , Celulasa/genética , Dicroismo Circular , Estabilidad de Enzimas , Genes Bacterianos , Cinética , Modelos Moleculares , Conformación Proteica , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Difracción de Rayos X , Xanthomonas campestris/genética
14.
Bioresour Technol ; 214: 623-628, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27187566

RESUMEN

Samples of Eucalyptus urograndis and Eucalyptus grandis sawdust were autohydrolyzed in aqueous conditions to reach temperatures in the range 110-190°C and reaction times of 0-150min in a minireactor. In each minireactor were used a liquor:wood ratio (10:1 L:kg dry wood), in order to assess the effects of the autohydrolysis severity and the crystalline properties of cellulose. The content of extractives, lignin, holocellulose, cellulose, hemicelluloses and crystallinity index obtained from the solid fraction after autohydrolysis of sawdust were determined. This study demonstrated that the hemicelluloses were extensively removed at 170 and 190°C, whereas cellulose was partly degraded to Eucalyptus urograndis and Eucalyptus grandis sawdust. The lignin content decreased, while the extractives content increased. It was defined that during autohydrolysis, had a slight decreased on crystalline structure of cellulose of Eucalyptus urogandis and Eucalyptus grandis.


Asunto(s)
Celulosa/química , Eucalyptus/química , Calor , Reactores Biológicos , Brasil , Hidrólisis , Lignina/química , Agua/análisis , Madera/química
15.
Enzyme Microb Technol ; 87-88: 1-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27178788

RESUMEN

Non-productive adsorption of cellulases onto lignins is an important mechanism that negatively affects the enzymatic hydrolysis of lignocellulose biomass. Here, we examined the non-productive adsorption of two bacterial ß-glucosidases (GH1 and GH3) on lignins. The results showed that ß-glucosidases can adsorb to lignins through different mechanisms. GH1 ß-glucosidase adsorption onto lignins was found to be strongly pH-dependent, suggesting that the adsorption is electrostatically modulated. For GH3 ß-glucosidase, the results suggested that the fibronectin type III-like domain interacts with lignins through electrostatic and hydrophobic interactions that can partially, or completely, overcome repulsive electrostatic forces between the catalytic domain and lignins. Finally, the increase of temperature did not result in the increase of ß-glucosidases adsorption, probably because there is no significant increase in hydrophobic regions in the ß-glucosidases structures. The data provided here can be useful for biotechnological applications, especially in the field of plant structural polysaccharides conversion into bioenergy and bioproducts.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulasas/química , Celulasas/metabolismo , Lignina/química , Lignina/metabolismo , Adsorción , Biocombustibles , Biomasa , Biotecnología , Dominio de Fibronectina del Tipo III , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Electricidad Estática , Temperatura
16.
Appl Biochem Biotechnol ; 177(2): 304-17, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26242386

RESUMEN

Glycoside hydrolases (GHs) are enzymes found in all living kingdoms that are involved in multiple physiological functions. Due to their multiple enzymatic activities, GHs are broadly applied in bioethanol, food, and paper industry. In order to increase the productivity of these industrial processes, a constant search for novel and efficient enzymes has been proved to be necessary. In this context, metagenomics is a powerful approach to achieve this demand. In the current study, we describe the discovery and characterization of a novel member of GH16 family derived from the sugarcane soil metagenome. The enzyme, named SCLam, has 286 amino acid residues and displays sequence homology and activity properties that resemble known laminarases. SCLam is active against barley beta-glucan, laminarin, and lichenan (72, 33, and 10 U mg(-1), respectively). The optimal reaction conditions were identified as 40 °C and pH 6.5. The low-resolution structure was determined using the small-angle X-ray scattering technique, revealing that SCLam is a monomer in solution with a radius of gyration equal to 19.6 Å. To the best of our knowledge, SCLam is the first nonspecific (1,3/1,3:1,4)-ß-D-glucan endohydrolase (EC 3.2.1.6) recovered by metagenomic approach to be characterized.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Metagenoma , Saccharum/crecimiento & desarrollo , Microbiología del Suelo , Secuencia de Aminoácidos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Filogenia , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Temperatura , Difracción de Rayos X
17.
Biotechnol Lett ; 37(12): 2419-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26272392

RESUMEN

OBJECTIVES: To biochemically characterize an expansin-like X protein domain from Xanthomonas campestris (XcEXLX1) and to study its synergy with cellulases in cellulose depolymerization. RESULTS: The protein was purified using a combination of ion exchange and size exclusion chromatography rendering about 30 mg pure protein/l culture medium. Circular dichroism spectroscopy and small-angle X-ray scattering studies of XcEXLX1 reveal that it is a strongly disordered ß-sheet protein. Its low resolution envelope fits nicely the crystallographic structure of the homologous protein EXLX1 from Bacillus subtillis. Furthermore, we demonstrate that XcEXLX1 shows a synergistic, pH-dependent effect when combined with a commercial enzymatic preparation (Accellerase 1500), enhancing its hydrolytic activity on a cellulosic substrate. The strongest effect was observed in acid pHs with an increase in sugar release of up to 36 %. CONCLUSION: The synergistic effect arising from the action of the expansin-like protein was considerable in the presence of significantly larger amounts of the commercial enzymatic cocktail then previously observed (0.35 FPU of Accellerase 1500/g substrate).


Asunto(s)
Celulosa/metabolismo , Hidrolasas/aislamiento & purificación , Hidrolasas/metabolismo , Xanthomonas campestris/enzimología , Cromatografía Liquida , Dicroismo Circular , Citosol/química , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrólisis , Conformación Proteica , Dispersión del Ángulo Pequeño
18.
PLoS One ; 10(2): e0118225, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25723179

RESUMEN

Endo-ß-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features.


Asunto(s)
Hidrolasas/química , Modelos Moleculares , Conformación Proteica , Termodinámica , Activación Enzimática , Estabilidad de Enzimas , Glicósidos/metabolismo , Concentración de Iones de Hidrógeno , Hidrolasas/metabolismo , Relación Estructura-Actividad , Temperatura
19.
Amino Acids ; 47(5): 937-48, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25637167

RESUMEN

The ß-glucosidases are enzymes essential for several industrial applications, especially in the field of plant structural polysaccharides conversion into bioenergy and bioproducts. In a recent study, we have provided a biochemical characterization of two hyperthermostable ß-glucosidases from Thermotoga petrophila belonging to the families GH1 (TpBGL1) and GH3 (TpBGL3). Here, as part of a continuing investigation, the oligomeric state, the net charge, and the structural stability, at acidic pH, of the TpBGL1 and TpBGL3 were characterized and compared. Enzymatic activity is directly related to the balance between protonation and conformational changes. Interestingly, our results indicated that there were no significant changes in the secondary, tertiary and quaternary structures of the ß-glucosidases at temperatures below 80 °C. Furthermore, the results indicated that both the enzymes are stable homodimers in solution. Therefore, the observed changes in the enzymatic activities are due to variations in pH that modify protonation of the enzymes residues and the net charge, directly affecting the interactions with ligands. Finally, the results showed that the two ß-glucosidases displayed different pH dependence of thermostability at temperatures above 80 °C. TpBGL1 showed higher stability at pH 6 than at pH 4, while TpBGL3 showed similar stability at both pH values. This study provides a useful comparison of the structural stability, at acidic pH, of two different hyperthermostable ß-glucosidases and how it correlates with the activity of the enzymes. The information described here can be useful for biotechnological applications in the biofuel and food industries.


Asunto(s)
Proteínas Bacterianas/química , Celulasas/química , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/química , Protones , Estabilidad de Enzimas , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/enzimología , Calor , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Electricidad Estática , Temperatura
20.
PLoS One ; 9(3): e92996, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24671161

RESUMEN

Endo-ß-1,4-mannanase from Thermotoga petrophila (TpMan) is a hyperthermostable enzyme that catalyzes the hydrolysis of ß-1,4-mannoside linkages in various mannan-containing polysaccharides. A recent study reported that TpMan is composed of a GH5 catalytic domain joined by a linker to a carbohydrate-binding domain. However, at this moment, there is no three-dimensional structure determined for TpMan. Little is known about the conformation of the TpMan as well as the role of the length and flexibility of the linker on the spatial arrangement of the constitutive domains. In this study, we report the first structural characterization of the entire TpMan by small-angle X-ray scattering combined with the three-dimensional structures of the individual domains in order to shed light on the low-resolution model, overall dimensions, and flexibility of this modular enzyme at different temperatures. The results are consistent with a linker with a compact structure and that occupies a small volume with respect to its large number of amino acids. Furthermore, at 20°C the results are consistent with a model where TpMan is a molecule composed of three distinct domains and that presents some level of molecular flexibility in solution. Even though the full enzyme has some degree of molecular flexibility, there might be a preferable conformation, which could be described by the rigid-body modeling procedure. Finally, the results indicate that TpMan undergoes a temperature-driven transition between conformational states without a significant disruption of its secondary structure. Our results suggest that the linker can optimize the geometry between the other two domains with respect to the substrate at high temperatures. These studies should provide a useful basis for future biophysical studies of entire TpMan.


Asunto(s)
Bacterias/enzimología , Manosidasas/química , Manosidasas/metabolismo , Temperatura , Dicroismo Circular , Dispersión Dinámica de Luz , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...