Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552209

RESUMEN

The elusive nature of the liver immune system in newborns remains an important challenge, casting a shadow over our understanding of how to effectively treat and prevent diseases in children. Therefore, deeper exploration into the intricacies of neonatal immunology might be crucial for improved pediatric healthcare. Using liver intravital microscopy, we unveiled a significant population of granulocytes in the hepatic parenchyma of fetuses and newborns. Utilizing high-dimensional immunophenotyping, we showed dynamic alterations predominantly in granulocytes during neonatal development. Liver intravital microscopy from birth through adulthood captures real-time dynamics, showing a substantial presence of Ly6G + cells that persisted significantly up to 2 weeks of age. Using CyTOF, we characterized neonatal Ly6G + cells as neutrophils, confirmed by morphology and immunohistochemistry. Surprisingly, the embryonic liver hosts a distinct population of neutrophils established as early as the second gestational week, challenging conventional notions about their origin. Additionally, we observed that embryonic neutrophils occupy preferentially the extravascular space, indicating their early establishment within the liver. Hepatic neutrophils in embryos and neonates form unique cell clusters, persisting during the initial days of life, while reduced migratory capabilities in neonates are observed, potentially compensating with increased reactive oxygen species (ROS) release in response to stimuli. Finally, in vivo imaging of acute neutrophil behavior in a newborn mouse, subjected to focal liver necrosis, unveils that neonatal neutrophils exhibit a reduced migratory response. The study provides unprecedented insights into the intricate interplay of neutrophils within the liver, shedding light on their functional and dynamic characteristics during development.

2.
Front Immunol ; 13: 1002919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531990

RESUMEN

Spleen is a key organ for immunologic surveillance, acting as a firewall for antigens and parasites that spread through the blood. However, how spleen leukocytes evolve across the developmental phase, and how they spatially organize and interact in vivo is still poorly understood. Using a novel combination of selected antibodies and fluorophores to image in vivo the spleen immune environment, we described for the first time the dynamics of immune development across postnatal period. We found that spleens from adults and infants had similar numbers and arrangement of lymphoid cells. In contrast, splenic immune environment in newborns is sharply different from adults in almost all parameters analysed. Using this in vivo approach, B cells were the most frequent subtype throughout the development. Also, we revealed how infections - using a model of malaria - can change the spleen immune profile in adults and infants, which could become the key to understanding different severity grades of infection. Our new imaging solutions can be extremely useful for different groups in all areas of biological investigation, paving a way for new intravital approaches and advances.


Asunto(s)
Malaria , Bazo , Adulto , Humanos , Recién Nacido , Microscopía Intravital , Linfocitos , Linfocitos B
3.
Plant Cell Rep ; 35(6): 1359-69, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27015682

RESUMEN

KEY MESSAGE: Assessment of chromosomal distribution of modified histones and 5-methylcytosine shown that there are diversification of chromosomal types among species of Brachiaria and its interspecific hybrids. Histone post-translational modifications and DNA methylation are epigenetic processes that are involved in structural and functional organization of the genome. This study compared the chromosomal distribution of modified histones and 5-methylcytosine (5-mCyt) in species and interspecific hybrids of Brachiaria with different ploidy levels and reproduction modes. The relation between H3K9me2 and 5-mCyt was observed in the nucleolus organizer region, centromeric central domain and pericentromeric region. H3K4me2 was detected in euchromatic domains, mainly in the terminal chromosomal regions. Comparison of chromosomal distribution among species and hybrids showed greater variation of chromosomal types for the H3K9me2 in B. decumbens (tetraploid and apomictic species) and the 963 hybrid, while, for the H3K4me2, the variation was higher in B. brizantha and B. decumbens (tetraploid and apomictic species) and 963 hybrid. The chromosome distribution of 5-mCyt was similar between B. brizantha and B. decumbens, which differ from the distribution observed in B. ruziziensis (diploid and sexual species). Significant alterations in DNA methylation were observed in the artificially tetraploidized B. ruziziensis and in the interspecific hybrids, possibly as result of hybridization and polyploidization processes. The monitoring of histone modifications and DNA methylation allowed categorizing nuclear and chromosomal distribution of these epigenetic marks, thus contributing to the knowledge of composition and structure of the genome/epigenome of Brachiaria species and hybrids. These data can be useful for speciation and genome evolution studies in genus Brachiaria, and represent important markers to explore relationships between genomes.


Asunto(s)
Brachiaria/genética , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Histonas/genética , Hibridación Genética/genética , Poliploidía , 5-Metilcitosina/metabolismo , Mapeo Cromosómico , Metilación de ADN
4.
Bot Stud ; 55(1): 63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28510982

RESUMEN

The use of the immunolocalization technique combined with cytogenetic and epigenetic studies is an indispensable tool and has contributed significantly to the analysis of the structure and function of chromosomes, since it can provide information about the spatial or temporal distribution of a given protein in the nucleus and chromosomes. Several chromosome-associated proteins in plant cells have already been identified by immunolocalization, such as histone and non-histone proteins and cell division-related protein (mitosis and meiosis). The principle of the immunolocalization technique in plants basically involves fixation and permeabilization of cells, the use of monoclonal or polyclonal antibodies attached to a signaling molecule, usually a fluorochrome and detection of the target molecule by using an epifluorescence microscope.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...