Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Cell ; 114(10): 259-275, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35844059

RESUMEN

BACKGROUD: Extracellular vesicles (EVs) are nanometric membrane vesicles produced by cells and involved in cell-cell communication. EV formation can occur in endosomal compartments whose budding depends on the ESCRT machinery (i.e., exosomes), or at the cell plasma membrane (i.e., EVs or microvesicles). How these EVs bud from the cell plasma membrane is not completely understood. Membrane curvatures of the plasma membrane toward the exterior are often generated by I-BAR domain proteins. I-BAR proteins are cytosolic proteins that when activated bind to the cell plasma membrane and are involved in protrusion formation including filopodia and lamellipodia. These proteins contain a conserved I-BAR domain that senses curvature and induces negative membrane curvatures at the plasma membrane. I-BAR proteins, such as IRSp53, also interact with actin co-factors to favor membrane protrusions. RESULTS: Here, we explore whether the I-BAR protein IRSp53 is sorting with EVs and if ectopic GFP-tagged I-BAR proteins, such as IRSp53-GFP, as well as related IRTKS-GFP or Pinkbar proteins, can be found in these EVs originated from the cell plasma membrane. We found that a subpopulation of these I-BAR EVs, which are negative for the CD81 exosomal biomarker, are produced from the cell plasma membrane in a TSG101-independent manner but in an Arp2/3-dependent manner. CONCLUSIONS: Our results thus reveal that IRSp53 containing EVs represent a subset of plasma membrane EVs whose production depends on branched actin. SIGNIFICANCE: IRSp53 belongs to the I-BAR family proteins involved in curving cell membranes through a link with cortical actin. In that perspective, IRSp53 was shown to help membrane curvature of HIV-1 particles and, here, to be part of the budding process of a sub-population of EVs through its link with Arp2/3. IRSp53 is consequently a biomarker of these EVs of the cell plasma membrane.


Asunto(s)
Actinas , Vesículas Extracelulares , Actinas/metabolismo , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
2.
Elife ; 102021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114563

RESUMEN

During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. siRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single-molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.


Asunto(s)
VIH-1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Virión/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Membrana Celular/metabolismo , Células HEK293 , VIH-1/fisiología , Humanos , Células Jurkat , Imagen Individual de Molécula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...