Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neuron ; 112(2): 209-229.e11, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37972594

RESUMEN

Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.


Asunto(s)
Angiogénesis , Células Endoteliales , Células Endoteliales/metabolismo , Nervios Periféricos/fisiología , Neovascularización Fisiológica , Axones , Regeneración Nerviosa/fisiología
3.
Front Cell Neurosci ; 17: 1231493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964795

RESUMEN

CDKL5 is a kinase with relevant functions in correct neuronal development and in the shaping of synapses. A decrease in its expression or activity leads to a severe neurodevelopmental condition known as CDKL5 deficiency disorder (CDD). CDD arises from CDKL5 mutations that lie in the coding region of the gene. However, the identification of a SNP in the CDKL5 5'UTR in a patient with symptoms consistent with CDD, together with the complexity of the CDKL5 transcript leader, points toward a relevant translational regulation of CDKL5 expression with important consequences in physiological processes as well as in the pathogenesis of CDD. We performed a bioinformatics and molecular analysis of the 5'UTR of CDKL5 to identify translational regulatory features. We propose an important role for structural cis-acting elements, with the involvement of the eukaryotic translational initiation factor eIF4B. By evaluating both cap-dependent and cap-independent translation initiation, we suggest the presence of an IRES supporting the translation of CDKL5 mRNA and propose a pathogenic effect of the C>T -189 SNP in decreasing the translation of the downstream protein.

4.
Neuron ; 110(24): 4090-4107.e11, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36240771

RESUMEN

The nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted. Through a mouse mutagenesis screen, we show that Plexin-D1 receptor is required in endothelial cells for development of neuromuscular connectivity. Motor neurons release Sema3C to elicit short-range repulsion via Plexin-D1, thus displacing endothelial cells that obstruct axon growth. When this signaling pathway is disrupted, epaxial motor neurons are blocked from reaching their muscle targets and concomitantly vascular patterning in the spinal cord is altered. Thus, an integrative system of opposing push-pull cues ensures detrimental axon-endothelial encounters are avoided while enabling vascularization within the nervous system and along peripheral nerves.


Asunto(s)
Semaforinas , Remodelación Vascular , Animales , Ratones , Células Endoteliales/metabolismo , Neuronas Motoras/metabolismo , Axones/metabolismo , Médula Espinal/metabolismo , Semaforinas/metabolismo
5.
Cell Death Dis ; 12(10): 870, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561421

RESUMEN

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the presence of tyrosine kinase BCR-ABL1 fusion protein, which deregulate transcription and mRNA translation. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge to cure CML patients. Here, we reveal that the m6A methyltransferase complex METTL3/METTL14 is upregulated in CML patients and that is required for proliferation of primary CML cells and CML cell lines sensitive and resistant to the TKI imatinib. We demonstrate that depletion of METTL3 strongly impairs global translation efficiency. In particular, our data show that METTL3 is crucial for the expression of genes involved in ribosome biogenesis and translation. Specifically, we found that METTL3 directly regulates the level of PES1 protein identified as an oncogene in several tumors. We propose a model in which nuclear METTL3/METTL14 methyltransferase complex modified nascent transcripts whose translation is enhanced by cytoplasmic localization of METTL3, independently from its catalytic activity. In conclusion, our results point to METTL3 as a novel relevant oncogene in CML and as a promising therapeutic target for TKI resistant CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , Adenosina/análogos & derivados , Adenosina/metabolismo , Catálisis , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Modelos Biológicos , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba
6.
Methods Mol Biol ; 2284: 271-287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835448

RESUMEN

The field of transcriptional regulation generally assumes that changes in transcripts levels reflect changes in transcriptional status of the corresponding gene. While this assumption might hold true for a large population of transcripts, a considerable and still unrecognized fraction of the variation might involve other steps of the RNA lifecycle, that is the processing of the premature RNA, and degradation of the mature RNA. Discrimination between these layers requires complementary experimental techniques, such as RNA metabolic labeling or block of transcription experiments. Nonetheless, the analysis of the premature and mature RNA, derived from intronic and exonic read counts in RNA-seq data, allows distinguishing between transcriptionally and post-transcriptionally regulated genes, although not recognizing the specific step involved in the post-transcriptional response, that is processing, degradation, or a combination of the two. We illustrate how the INSPEcT R/Bioconductor package could be used to infer post-transcriptional regulation in TCGA RNA-seq samples for Hepatocellular Carcinoma.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Procesamiento Postranscripcional del ARN/genética , RNA-Seq/métodos , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ARN/métodos , Programas Informáticos
7.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33348360

RESUMEN

Despite gene expression programs being notoriously complex, RNA abundance is usually assumed as a proxy for transcriptional activity. Recently developed approaches, able to disentangle transcriptional and post-transcriptional regulatory processes, have revealed a more complex scenario. It is now possible to work out how synthesis, processing and degradation kinetic rates collectively determine the abundance of each gene's RNA. It has become clear that the same transcriptional output can correspond to different combinations of the kinetic rates. This underscores the fact that markedly different modes of gene expression regulation exist, each with profound effects on a gene's ability to modulate its own expression. This review describes the development of the experimental and computational approaches, including RNA metabolic labeling and mathematical modeling, that have been disclosing the mechanisms underlying complex transcriptional programs. Current limitations and future perspectives in the field are also discussed.


Asunto(s)
Modelos Genéticos , Procesamiento Postranscripcional del ARN , ARN/biosíntesis , ARN/genética , Transcripción Genética , Animales , Humanos
8.
EMBO J ; 40(3): e104569, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300180

RESUMEN

Post-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown. To decouple these two molecular processes, we used cytosolic long noncoding RNAs (lncRNAs) as models for endogenous transcripts that are not translated. We show that, despite interacting with the miRNA-loaded RNA-induced silencing complex, the steady-state abundance and decay rates of these transcripts are minimally affected by miRNA loss. To further validate the apparent requirement of translation for miRNA-dependent decay, we fused two lncRNA candidates to the 3'-end of a protein-coding gene reporter and found this results in their miRNA-dependent destabilization. Further analysis revealed that the few natural lncRNAs whose levels are regulated by miRNAs in mESCs tend to associate with translating ribosomes, and possibly represent misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. In summary, our analyses suggest that translation is required for miRNA-dependent transcript destabilization, and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Fusión Artificial Génica , Línea Celular , Regulación de la Expresión Génica , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , Ribosomas/metabolismo , Análisis de Secuencia de ARN
9.
Genome Res ; 30(10): 1492-1507, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32978246

RESUMEN

The quantification of the kinetic rates of RNA synthesis, processing, and degradation are largely based on the integrative analysis of total and nascent transcription, the latter being quantified through RNA metabolic labeling. We developed INSPEcT-, a computational method based on the mathematical modeling of premature and mature RNA expression that is able to quantify kinetic rates from steady-state or time course total RNA-seq data without requiring any information on nascent transcripts. Our approach outperforms available solutions, closely recapitulates the kinetic rates obtained through RNA metabolic labeling, improves the ability to detect changes in transcript half-lives, reduces the cost and complexity of the experiments, and can be adopted to study experimental conditions in which nascent transcription cannot be readily profiled. Finally, we applied INSPEcT- to the characterization of post-transcriptional regulation landscapes in dozens of physiological and disease conditions. This approach was included in the INSPEcT Bioconductor package, which can now unveil RNA dynamics from steady-state or time course data, with or without the profiling of nascent RNA.


Asunto(s)
RNA-Seq , ARN/metabolismo , Biología Computacional/métodos , Enfermedad/genética , Expresión Génica , Genoma , Humanos , Cinética , ARN/biosíntesis , Procesamiento Postranscripcional del ARN , RNA-Seq/métodos , Tiouridina
10.
Front Genet ; 11: 759, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765590

RESUMEN

The abundance of RNA species and their response to perturbations are set by the kinetics rates of RNA synthesis, processing, and degradation. However, the visualization, interpretation, and manipulation of these data require familiarity with mathematical modeling and command line tools. INSPEcT-GUI is an R-Shiny interface that allows researchers without specific training to effortlessly explore how the fine kinetic regulation of the RNA life cycle can shape gene expression programs. In particular, it allows to: (i) interactively visualize gene-level RNA dynamics; (ii) refine the model fit of experimental data; (iii) test alternative regulatory models; (iv) explore, independently from the availability of data, how the combined action of the RNA kinetic rates impacts on premature and mature RNA. INSPEcT-GUI is freely available within the R/Bioconductor package INSPEcT at http://bioconductor.org/packages/INSPEcT/. An HTML vignette including documentation on the tool startup and usage, executable examples, and a video demonstration, are available at: http://bioconductor.org/packages/release/bioc/vignettes/INSPEcT/inst/doc/INSPEcT_GUI.html.

11.
Front Genet ; 11: 394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425981

RESUMEN

It has been known for a few decades that transcripts can be marked by dozens of different modifications. Yet, we are just at the beginning of charting these marks and understanding their functional impact. High-quality methods were developed for the profiling of some of these marks, and approaches to finely study their impact on specific phases of the RNA life-cycle are available, including RNA metabolic labeling. Thanks to these improvements, the most abundant marks, including N6-methyladenosine, are emerging as important determinants of the fate of marked RNAs. However, we still lack approaches to directly study how the set of marks for a given RNA molecule shape its fate. In this perspective, we first review current leading approaches in the field. Then, we propose an experimental and computational setup, based on direct RNA sequencing and mathematical modeling, to decipher the functional consequences of RNA modifications on the fate of individual RNA molecules and isoforms.

12.
EMBO Rep ; 20(9): e47987, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31334602

RESUMEN

Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.


Asunto(s)
Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunoprecipitación de Cromatina , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética/genética
13.
Genes (Basel) ; 10(1)2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626100

RESUMEN

N6-methyladenosine (m6A) is the most abundant RNA modification. It has been involved in the regulation of RNA metabolism, including degradation and translation, in both physiological and disease conditions. A recent study showed that m6A-mediated degradation of key transcripts also plays a role in the control of T cells homeostasis and IL-7 induced differentiation. We re-analyzed the omics data from that study and, through the integrative analysis of total and nascent RNA-seq data, we were able to comprehensively quantify T cells RNA dynamics and how these are affected by m6A depletion. In addition to the expected impact on RNA degradation, we revealed a broader effect of m6A on RNA dynamics, which included the alteration of RNA synthesis and processing. Altogether, the combined action of m6A on all major steps of the RNA life-cycle closely re-capitulated the observed changes in the abundance of premature and mature RNA species. Ultimately, our re-analysis extended the findings of the initial study, focused on RNA stability, and proposed a yet unappreciated role for m6A in RNA synthesis and processing dynamics.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular , Procesamiento Postranscripcional del ARN , Linfocitos T/metabolismo , Adenosina/metabolismo , Animales , Ratones , Modelos Teóricos , Estabilidad del ARN , Linfocitos T/citología
14.
Genome Res ; 27(10): 1658-1664, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28904013

RESUMEN

Overexpression of the MYC transcription factor causes its widespread interaction with regulatory elements in the genome but leads to the up- and down-regulation of discrete sets of genes. The molecular determinants of these selective transcriptional responses remain elusive. Here, we present an integrated time-course analysis of transcription and mRNA dynamics following MYC activation in proliferating mouse fibroblasts, based on chromatin immunoprecipitation, metabolic labeling of newly synthesized RNA, extensive sequencing, and mathematical modeling. Transcriptional activation correlated with the highest increases in MYC binding at promoters. Repression followed a reciprocal scenario, with the lowest gains in MYC binding. Altogether, the relative abundance (henceforth, "share") of MYC at promoters was the strongest predictor of transcriptional responses in diverse cell types, predominating over MYC's association with the corepressor ZBTB17 (also known as MIZ1). MYC activation elicited immediate loading of RNA polymerase II (RNAPII) at activated promoters, followed by increases in pause-release, while repressed promoters showed opposite effects. Gains and losses in RNAPII loading were proportional to the changes in the MYC share, suggesting that repression by MYC may be partly indirect, owing to competition for limiting amounts of RNAPII. Secondary to the changes in RNAPII loading, the dynamics of elongation and pre-mRNA processing were also rapidly altered at MYC regulated genes, leading to the transient accumulation of partially or aberrantly processed mRNAs. Altogether, our results shed light on how overexpressed MYC alters the various phases of the RNAPII cycle and the resulting transcriptional response.


Asunto(s)
Regiones Promotoras Genéticas/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo , Precursores del ARN/biosíntesis , Transcripción Genética/fisiología , Animales , Línea Celular Transformada , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , Ubiquitina-Proteína Ligasas
15.
Nat Struct Mol Biol ; 24(1): 86-96, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27870833

RESUMEN

Pervasive transcription of the human genome results in a heterogeneous mix of coding RNAs and long noncoding RNAs (lncRNAs). Only a small fraction of lncRNAs have demonstrated regulatory functions, thus making functional lncRNAs difficult to distinguish from nonfunctional transcriptional byproducts. This difficulty has resulted in numerous competing human lncRNA classifications that are complicated by a steady increase in the number of annotated lncRNAs. To address these challenges, we quantitatively examined transcription, splicing, degradation, localization and translation for coding and noncoding human genes. We observed that annotated lncRNAs had lower synthesis and higher degradation rates than mRNAs and discovered mechanistic differences explaining slower lncRNA splicing. We grouped genes into classes with similar RNA metabolism profiles, containing both mRNAs and lncRNAs to varying extents. These classes exhibited distinct RNA metabolism, different evolutionary patterns and differential sensitivity to cellular RNA-regulatory pathways. Our classification provides an alternative to genomic context-driven annotations of lncRNAs.


Asunto(s)
ARN Mensajero/genética , ARN no Traducido/genética , Expresión Génica , Células HEK293 , Humanos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Empalme del ARN , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo
16.
Front Genet ; 7: 75, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200084

RESUMEN

Next-generation sequencing (NGS) technologies have deeply changed our understanding of cellular processes by delivering an astonishing amount of data at affordable prices; nowadays, many biology laboratories have already accumulated a large number of sequenced samples. However, managing and analyzing these data poses new challenges, which may easily be underestimated by research groups devoid of IT and quantitative skills. In this perspective, we identify five issues that should be carefully addressed by research groups approaching NGS technologies. In particular, the five key issues to be considered concern: (1) adopting a laboratory management system (LIMS) and safeguard the resulting raw data structure in downstream analyses; (2) monitoring the flow of the data and standardizing input and output directories and file names, even when multiple analysis protocols are used on the same data; (3) ensuring complete traceability of the analysis performed; (4) enabling non-experienced users to run analyses through a graphical user interface (GUI) acting as a front-end for the pipelines; (5) relying on standard metadata to annotate the datasets, and when possible using controlled vocabularies, ideally derived from biomedical ontologies. Finally, we discuss the currently available tools in the light of these issues, and we introduce HTS-flow, a new workflow management system conceived to address the concerns we raised. HTS-flow is able to retrieve information from a LIMS database, manages data analyses through a simple GUI, outputs data in standard locations and allows the complete traceability of datasets, accompanying metadata and analysis scripts.

17.
BMC Bioinformatics ; 17: 80, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26860319

RESUMEN

BACKGROUND: The increasing availability of resequencing data has led to a better understanding of the most important genes in cancer development. Nevertheless, the mutational landscape of many tumor types is heterogeneous and encompasses a long tail of potential driver genes that are systematically excluded by currently available methods due to the low frequency of their mutations. We developed LowMACA (Low frequency Mutations Analysis via Consensus Alignment), a method that combines the mutations of various proteins sharing the same functional domains to identify conserved residues that harbor clustered mutations in multiple sequence alignments. LowMACA is designed to visualize and statistically assess potential driver genes through the identification of their mutational hotspots. RESULTS: We analyzed the Ras superfamily exploiting the known driver mutations of the trio K-N-HRAS, identifying new putative driver mutations and genes belonging to less known members of the Rho, Rab and Rheb subfamilies. Furthermore, we applied the same concept to a list of known and candidate driver genes, and observed that low confidence genes show similar patterns of mutation compared to high confidence genes of the same protein family. CONCLUSIONS: LowMACA is a software for the identification of gain-of-function mutations in putative oncogenic families, increasing the amount of information on functional domains and their possible role in cancer. In this context LowMACA emphasizes the role of genes mutated at low frequency otherwise undetectable by classical single gene analysis. LowMACA is an R package available at http://www.bioconductor.org/packages/release/bioc/html/LowMACA.html. It is also available as a GUI standalone downloadable at: https://cgsb.genomics.iit.it/wiki/projects/LowMACA.


Asunto(s)
Análisis Mutacional de ADN/métodos , Mutación/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/metabolismo , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Humanos , Proteínas/genética
18.
Genome Res ; 26(4): 554-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26821571

RESUMEN

The regulation of miRNAs is critical to the definition of cell identity and behavior in normal physiology and disease. To date, the dynamics of miRNA degradation and the mechanisms involved in remain largely obscure, in particular, in higher organisms. Here, we developed a pulse-chase approach based on metabolic RNA labeling to calculate miRNA decay rates at genome-wide scale in mammalian cells. Our analysis revealed heterogeneous miRNA half-lives, with many species behaving as stable molecules (T1/2> 24 h), while others, including passenger miRNAs and a number (25/129) of guide miRNAs, are quickly turned over (T1/2= 4-14 h). Decay rates were coupled with other features, including genomic organization, transcription rates, structural heterogeneity (isomiRs), and target abundance, measured through quantitative experimental approaches. This comprehensive analysis highlighted functional mechanisms that mediate miRNA degradation, as well as the importance of decay dynamics in the regulation of the miRNA pool under both steady-state conditions and during cell transitions.


Asunto(s)
MicroARNs/genética , Animales , Proteínas Argonautas/metabolismo , Fibroblastos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones , MicroARNs/metabolismo , Interferencia de ARN , Estabilidad del ARN , Ribonucleasa III/metabolismo , Factores de Tiempo , Transcripción Genética
19.
Mol Cell ; 60(3): 460-74, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593720

RESUMEN

Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs.


Asunto(s)
Núcleo Celular/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , Terminación de la Transcripción Genética/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/genética , ARN no Traducido/genética
20.
BMC Bioinformatics ; 16: 313, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415965

RESUMEN

BACKGROUND: Numerous methods are available to profile several epigenetic marks, providing data with different genome coverage and resolution. Large epigenomic datasets are then generated, and often combined with other high-throughput data, including RNA-seq, ChIP-seq for transcription factors (TFs) binding and DNase-seq experiments. Despite the numerous computational tools covering specific steps in the analysis of large-scale epigenomics data, comprehensive software solutions for their integrative analysis are still missing. Multiple tools must be identified and combined to jointly analyze histone marks, TFs binding and other -omics data together with DNA methylation data, complicating the analysis of these data and their integration with publicly available datasets. RESULTS: To overcome the burden of integrating various data types with multiple tools, we developed two companion R/Bioconductor packages. The former, methylPipe, is tailored to the analysis of high- or low-resolution DNA methylomes in several species, accommodating (hydroxy-)methyl-cytosines in both CpG and non-CpG sequence context. The analysis of multiple whole-genome bisulfite sequencing experiments is supported, while maintaining the ability of integrating targeted genomic data. The latter, compEpiTools, seamlessly incorporates the results obtained with methylPipe and supports their integration with other epigenomics data. It provides a number of methods to score these data in regions of interest, leading to the identification of enhancers, lncRNAs, and RNAPII stalling/elongation dynamics. Moreover, it allows a fast and comprehensive annotation of the resulting genomic regions, and the association of the corresponding genes with non-redundant GeneOntology terms. Finally, the package includes a flexible method based on heatmaps for the integration of various data types, combining annotation tracks with continuous or categorical data tracks. CONCLUSIONS: methylPipe and compEpiTools provide a comprehensive Bioconductor-compliant solution for the integrative analysis of heterogeneous epigenomics data. These packages are instrumental in providing biologists with minimal R skills a complete toolkit facilitating the analysis of their own data, or in accelerating the analyses performed by more experienced bioinformaticians.


Asunto(s)
Epigenómica , Interfaz Usuario-Computador , Islas de CpG , ADN/química , ADN/metabolismo , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Código de Histonas , Internet , ARN/química , ARN/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA