Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2152, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443757

RESUMEN

Chromosome segregation requires sister kinetochores to attach microtubules emanating from opposite spindle poles. Proper attachments come under tension and are stabilized, but defective attachments lacking tension are released, giving another chance for correct attachments to form. This error correction process depends on Aurora B kinase, which phosphorylates kinetochores to destabilize their microtubule attachments. However, the mechanism by which Aurora B distinguishes tense versus relaxed kinetochores remains unclear because it is difficult to detect kinase-triggered detachment and to manipulate kinetochore tension in vivo. To address these challenges, we apply an optical trapping-based assay using soluble Aurora B and reconstituted kinetochore-microtubule attachments. Strikingly, the tension on these attachments suppresses their Aurora B-triggered release, suggesting that tension-dependent changes in the conformation of kinetochores can regulate Aurora B activity or its outcome. Our work uncovers the basis for a key mechano-regulatory event that ensures accurate segregation and may inform studies of other mechanically regulated enzymes.


Asunto(s)
Segregación Cromosómica , Cinetocoros , Aurora Quinasa B/genética , Microtúbulos , Polos del Huso
2.
Proc Natl Acad Sci U S A ; 112(11): 3326-31, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733864

RESUMEN

Escherichia coli senses envelope stress using a signaling cascade initiated when DegS cleaves a transmembrane inhibitor of a transcriptional activator for response genes. Each subunit of the DegS trimer contains a protease domain and a PDZ domain. During stress, unassembled outer-membrane proteins (OMPs) accumulate in the periplasm and their C-terminal peptides activate DegS by binding to its PDZ domains. In the absence of stress, autoinhibitory interactions, mediated by the L3 loop, stabilize inactive DegS, but it is not known how this autoinhibition is reversed during activation. Here, we show that OMP peptides initiate a steric clash between the PDZ domain and the L3 loop that results in a structural rearrangement of the loop and breaking of autoinhibitory interactions. Many different L3-loop sequences are compatible with activation but those that relieve the steric clash reduce OMP activation dramatically. Our results provide a compelling molecular mechanism for allosteric activation of DegS by OMP-peptide binding.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Activación Enzimática , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , beta-Galactosidasa/metabolismo
3.
Structure ; 23(3): 517-526, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25703375

RESUMEN

In E. coli, outer-membrane stress causes a transcriptional response through a signaling cascade initiated by DegS cleavage of a transmembrane antisigma factor. Each subunit of DegS, an HtrA-family protease, contains a protease domain and a PDZ domain. The trimeric protease domain is autoinhibited by the unliganded PDZ domains. Allosteric activation requires binding of unassembled outer-membrane proteins (OMPs) to the PDZ domains and protein substrate binding. Here, we identify a set of DegS residues that cluster together at subunit-subunit interfaces in the trimer, link the active sites and substrate binding sites, and are crucial for stabilizing the active enzyme conformation in response to OMP signaling. These residues are conserved across the HtrA-protease family, including orthologs linked to human disease, supporting a common mechanism of allosteric activation. Indeed, mutation of residues at homologous positions in the DegP quality-control protease also eliminates allosteric activation.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas Periplasmáticas/química , Serina Endopeptidasas/química , Regulación Alostérica , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Especificidad por Sustrato
4.
Mol Microbiol ; 93(3): 415-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913916

RESUMEN

In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer-membrane proteins (OMPs) activate the AlgW protease, and unassembled lipopolysaccharides bind periplasmic MucB, releasing MucA and facilitating its proteolysis by activated AlgW. To search for novel alginate regulators, we screened a transposon library in the non-mucoid reference strain PAO1, and identified a mutant that confers mucoidy through overexpression of a protein encoded by the chaperone-usher pathway gene cupB5. CupB5-dependent mucoidy occurs through the AlgU pathway and can be reversed by overexpression of MucA or MucB. In the presence of activating OMP peptides, peptides corresponding to a region of CupB5 needed for mucoidy further stimulated AlgW cleavage of MucA in vitro. Moreover, the CupB5 peptide allowed OMP-activated AlgW cleavage of MucA in the presence of the MucB inhibitor. These results support a novel mechanism for conversion to mucoidy in which the proteolytic activity of AlgW and its ability to compete with MucB for MucA is mediated by independent peptide signals.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alginatos , Elementos Transponibles de ADN , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos , Chaperonas Moleculares/metabolismo , Mutación , Señales de Clasificación de Proteína , Proteínas Represoras/metabolismo , Factor sigma/metabolismo
5.
J Bacteriol ; 191(22): 6975-87, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19749048

RESUMEN

Although a variety of bacterial species have been reported to use the interspecies communication signal autoinducer-2 (AI-2) to regulate multiple behaviors, the molecular mechanisms of AI-2 recognition and signal transduction remain poorly understood. To date, two types of AI-2 receptors have been identified: LuxP, present in Vibrio spp., and LsrB, first identified in Salmonella enterica serovar Typhimurium. In S. Typhimurium, LsrB is the ligand binding protein of a transport system that enables the internalization of AI-2. Here, using both sequence analysis and structure prediction, we establish a set of criteria for identifying functional AI-2 receptors. We test our predictions experimentally, assaying key species for their abilities to import AI-2 in vivo, and test their LsrB orthologs for AI-2 binding in vitro. Using these experimental approaches, we were able to identify AI-2 receptors in organisms belonging to phylogenetically distinct families such as the Enterobacteriaceae, Rhizobiaceae, and Bacillaceae. Phylogenetic analysis of LsrB orthologs indicates that this pattern could result from one single origin of the functional LsrB gene in a gammaproteobacterium, suggesting possible posterior independent events of lateral gene transfer to the Alphaproteobacteria and Firmicutes. Finally, we used mutagenesis to show that two AI-2-interacting residues are essential for the AI-2 binding ability. These two residues are conserved in the binding sites of all the functional AI-2 binding proteins but not in the non-AI-2-binding orthologs. Together, these results strongly support our ability to identify functional LsrB-type AI-2 receptors, an important step in investigations of this interspecies signal.


Asunto(s)
Proteínas Bacterianas/metabolismo , Receptores de Superficie Celular/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Bacillaceae/genética , Bacillaceae/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Sitios de Unión , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano/genética , Genoma Bacteriano/fisiología , Filogenia , Unión Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/clasificación , Receptores de Superficie Celular/genética , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA