Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 875102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847987

RESUMEN

BLM is sumoylated in response to replication stress. We have studied the role of BLM sumoylation in physiologically normal and replication-stressed conditions by expressing in BLM-deficient cells a BLM with SUMO acceptor-site mutations, which we refer to as SUMO-mutant BLM cells. SUMO-mutant BLM cells exhibited multiple defects in both stressed and unstressed DNA replication conditions, including, in hydroxyurea-treated cells, reduced fork restart and increased fork collapse and, in untreated cells, slower fork velocity and increased fork instability as assayed by track-length asymmetry. We further showed by fluorescence recovery after photobleaching that SUMO-mutant BLM protein was less dynamic than normal BLM and comprised a higher immobile fraction at collapsed replication forks. BLM sumoylation has previously been linked to the recruitment of RAD51 to stressed forks in hydroxyurea-treated cells. An important unresolved question is whether the failure to efficiently recruit RAD51 is the explanation for replication stress in untreated SUMO-mutant BLM cells.

2.
Nucleic Acids Res ; 49(15): 8665-8683, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329458

RESUMEN

The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ciclina C/genética , Quinasa 8 Dependiente de Ciclina/genética , Transcripción Genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Humanos , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
3.
Cancer Res ; 79(14): 3762-3775, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31123088

RESUMEN

DNA damage checkpoint kinases ATR and WEE1 are among key regulators of DNA damage response pathways protecting cells from replication stress, a hallmark of cancer that has potential to be exploited for therapeutic use. ATR and WEE1 inhibitors are in early clinical trials and success will require greater understanding of both their mechanism of action and biomarkers for patient selection. Here, we report selective antitumor activity of ATR and WEE1 inhibitors in a subset of non-germinal center B-cell (GCB) diffuse large B-cell lymphoma (DLBCL) cell lines, characterized by high MYC protein expression and CDKN2A/B deletion. Activity correlated with the induction of replication stress, indicated by increased origin firing and retardation of replication fork progression. However, ATR and WEE1 inhibitors caused different amounts of DNA damage and cell death in distinct phases of the cell cycle, underlying the increased potency observed with WEE1 inhibition. ATR inhibition caused DNA damage to manifest as 53BP1 nuclear bodies in daughter G1 cells leading to G1 arrest, whereas WEE1 inhibition caused DNA damage and arrest in S phase, leading to earlier onset apoptosis. In vivo xenograft DLBCL models confirmed differences in single-agent antitumor activity, but also showed potential for effective ATR inhibitor combinations. Importantly, insights into the different inhibitor mechanisms may guide differentiated clinical development strategies aimed at exploiting specific vulnerabilities of tumor cells while maximizing therapeutic index. Our data therefore highlight clinical development opportunities for both ATR and WEE1 inhibitors in non-GCB DLBCL subtypes that represent an area of unmet clinical need. SIGNIFICANCE: ATR and WEE1 inhibitors demonstrate effective antitumor activity in preclinical models of DLBCL associated with replication stress, but new mechanistic insights and biomarkers of response support a differentiated clinical development strategy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Replicación del ADN/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Pirimidinonas/farmacología , Sulfóxidos/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Indoles , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Morfolinas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Pirimidinonas/administración & dosificación , Sulfonamidas , Sulfóxidos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
4.
PLoS Genet ; 15(2): e1007942, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30735491

RESUMEN

NSMCE2 is an E3 SUMO ligase and a subunit of the SMC5/6 complex that associates with the replication fork and protects against genomic instability. Here, we study the fate of collapsed replication forks generated by prolonged hydroxyurea treatment in human NSMCE2-deficient cells. Double strand breaks accumulate during rescue by converging forks in normal cells but not in NSMCE2-deficient cells. Un-rescued forks persist into mitosis, leading to increased mitotic DNA damage. Excess RAD51 accumulates and persists at collapsed forks in NSMCE2-deficient cells, possibly due to lack of BLM recruitment to stalled forks. Despite failure of BLM to accumulate at stalled forks, NSMCE2-deficient cells exhibit lower levels of hydroxyurea-induced sister chromatid exchange. In cells deficient in both NSMCE2 and BLM, hydroxyurea-induced double strand breaks and sister chromatid exchange resembled levels found in NSCME2-deficient cells. We conclude that the rescue of collapsed forks by converging forks is dependent on NSMCE2.


Asunto(s)
Daño del ADN , Ligasas/metabolismo , Mitosis , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Epistasis Genética , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Hidroxiurea/farmacología , Ligasas/deficiencia , Ligasas/genética , Modelos Biológicos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/deficiencia , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Intercambio de Cromátides Hermanas/efectos de los fármacos , Sumoilación
5.
Placenta ; 66: 57-64, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29884303

RESUMEN

AIMS: The human placental syncytiotrophoblast (STB) cells play essential roles in embryo implantation and nutrient exchange between the mother and the fetus. STBs are polyploid which are formed by fusion of diploid cytotrophoblast (CTB) cells. Abnormality in STBs formation can result in pregnancy-related disorders. While a number of genes have been associated with CTB fusion the initial events that trigger cell fusion are not well understood. Primary objective of this study was to enhance our understanding about the molecular mechanism of placental cell fusion. METHODS: FACS and microscopic analysis was used to optimize Forskolin-induced fusion of BeWo cells (surrogate of CTBs) and subsequently, changes in the expression of different cell cycle regulator genes were analyzed through Western blotting and qPCR. Immunohistochemistry was performed on the first trimester placental tissue sections to validate the results in the context of placental tissue. Effect of Cyclin Dependent Kinase 1 (CDK1) inhibitor, RO3306, on BeWo cell fusion was studied by microscopy and FACS, and by monitoring the expression of human Chorionic Gonadotropin (hCG) by Western blotting and qPCR. RESULTS: The data showed that the placental cell fusion was associated with down regulation of CDK1 and its associated cyclin B, and significant decrease in DNA replication. Moreover, inhibition of CDK1 by an exogenous inhibitor induced placental cell fusion and expression of hCG. CONCLUSION: Here, we report that the placental cell fusion can be induced by inhibiting CDK1. This study has a high therapeutic significance to manage pregnancy related abnormalities.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Gonadotropina Coriónica/genética , Gonadotropina Coriónica/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Fusión Celular , Línea Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Replicación del ADN , Regulación hacia Abajo , Femenino , Humanos , Ratones , Placenta/citología , Placenta/metabolismo , Embarazo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Especificidad de la Especie , Trofoblastos/efectos de los fármacos
6.
Ageing Res Rev ; 33: 36-51, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27238185

RESUMEN

Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , ADN Helicasas/fisiología , RecQ Helicasas/genética , Helicasa del Síndrome de Werner/genética , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/genética , Replicación del ADN , Inestabilidad Genómica , Humanos , Mutación , Síndrome de Werner/diagnóstico , Síndrome de Werner/genética
7.
EMBO J ; 34(15): 2096-110, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26082189

RESUMEN

The replisome is important for DNA replication checkpoint activation, but how specific components of the replisome coordinate with ATR to activate Chk1 in human cells remains largely unknown. Here, we demonstrate that And-1, a replisome component, acts together with ATR to activate Chk1. And-1 is phosphorylated at T826 by ATR following replication stress, and this phosphorylation is required for And-1 to accumulate at the damage sites, where And-1 promotes the interaction between Claspin and Chk1, thereby stimulating efficient Chk1 activation by ATR. Significantly, And-1 binds directly to ssDNA and facilitates the association of Claspin with ssDNA. Furthermore, And-1 associates with replication forks and is required for the recovery of stalled forks. These studies establish a novel ATR-And-1 axis as an important regulator for efficient Chk1 activation and reveal a novel mechanism of how the replisome regulates the replication checkpoint and genomic stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Proteínas Quinasas/metabolismo , Anticuerpos/inmunología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunoprecipitación , Espectrometría de Masas , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética
8.
PLoS One ; 9(5): e97434, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24848107

RESUMEN

Proliferating trophoblast stem cells (TSCs) can differentiate into nonproliferating but viable trophoblast giant cells (TGCs) that are resistant to DNA damage induced apoptosis. Differentiation is associated with selective up-regulation of the Cip/Kip cyclin-dependent kinase inhibitors p57 and p21; expression of p27 remains constant. Previous studies showed that p57 localizes to the nucleus in TGCs where it is essential for endoreplication. Here we show that p27 also remains localized to the nucleus during TSC differentiation where it complements the role of p57. Unexpectedly, p21 localized to the cytoplasm where it was maintained throughout both the G- and S-phases of endocycles, and where it prevented DNA damage induced apoptosis. This unusual status for a Cip/Kip protein was dependent on site-specific phosphorylation of p21 by the Akt1 kinase that is also up-regulated in TGCs. Although cytoplasmic p21 is widespread among cancer cells, among normal cells it has been observed only in monocytes. The fact that it also occurs in TGCs reveals that p57 and p21 serve nonredundant functions, and suggests that the role of p21 in suppressing apoptosis is restricted to terminally differentiated cells.


Asunto(s)
Apoptosis/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Células Gigantes/metabolismo , Trofoblastos/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Citosol/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Células Gigantes/citología , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Trofoblastos/citología
9.
Dev Biol ; 387(1): 49-63, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24412371

RESUMEN

Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.


Asunto(s)
Factor 4 de Crecimiento de Fibroblastos/metabolismo , Geminina/metabolismo , Células Gigantes/metabolismo , Trofoblastos/metabolismo , Animales , Apoptosis/genética , Diferenciación Celular , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Daño del ADN/genética , Replicación del ADN/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factor 4 de Crecimiento de Fibroblastos/genética , Geminina/genética , Regulación del Desarrollo de la Expresión Génica , Células Gigantes/citología , Ratones , Ratones Transgénicos , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Trofoblastos/citología , Regulación hacia Arriba
10.
J Biol Chem ; 287(51): 42469-79, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23093411

RESUMEN

DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2-7 onto chromatin during late mitosis of the cell cycle. MCM2-7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G(1) phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2-7 to facilitate the assembly of MCM2-7 onto chromatin at replication origins in late mitosis and G(1) phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G(1) phase cells. Thus, human And-1 facilitates loading of the MCM2-7 helicase onto chromatin during the assembly of pre-RC.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Acetilación , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Fase G1 , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Proteínas Nucleares/metabolismo , Unión Proteica , Origen de Réplica , Telofase
11.
Front Physiol ; 3: 368, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055977

RESUMEN

Development of a fertilized human egg into an average sized adult requires about 29 trillion cell divisions, thereby producing enough DNA to stretch to the Sun and back 200 times (DePamphilis and Bell, 2011)! Even more amazing is the fact that throughout these mitotic cell cycles, the human genome is duplicated once and only once each time a cell divides. If a cell accidentally begins to re-replicate its nuclear DNA prior to cell division, checkpoint pathways trigger apoptosis. And yet, some cells are developmentally programmed to respond to environmental cues by switching from mitotic cell cycles to endocycles, a process in which multiple S phases occur in the absence of either mitosis or cytokinesis. Endocycles allow production of viable, differentiated, polyploid cells that no longer proliferate. What is surprising is that among the 516 (Manning et al., 2002) to 557 (BioMart web site) protein kinases encoded by the human genome, only eight regulate nuclear DNA replication directly. These are Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, Cdc7, Checkpoint kinase-1 (Chk1), and Checkpoint kinase-2. Even more remarkable is the fact that only four of these enzymes (Cdk1, Cdk7, Cdc7, and Chk1) are essential for mammalian development. Here we describe how these protein kinases determine when DNA replication occurs during mitotic cell cycles, how mammalian cells switch from mitotic cell cycles to endocycles, and how cancer cells can be selectively targeted for destruction by inducing them to begin a second S phase before mitosis is complete.

12.
PLoS One ; 6(11): e27101, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22102875

RESUMEN

A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/genética , Replicación del ADN , Proteínas de Drosophila/metabolismo , Drosophila/genética , Hidroxiurea/farmacología , Animales , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Drosophila/efectos de los fármacos , Drosophila/metabolismo , Citometría de Flujo , Humanos , Componente 6 del Complejo de Mantenimiento de Minicromosoma , Proteínas de Mantenimiento de Minicromosoma , Inhibidores de la Síntesis del Ácido Nucleico/farmacología
13.
Mol Cell Biol ; 31(19): 4129-43, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21791608

RESUMEN

Trophoblast stem (TS) cells proliferate in the presence of fibroblast growth factor 4, but in its absence, they differentiate into polyploid trophoblast giant (TG) cells that remain viable but nonproliferative. Differentiation is coincident with expression of the cyclin-dependent kinase (CDK)-specific inhibitors p21 and p57, of which p57 is essential for switching from mitotic cell cycles to endocycles. Here, we show that, in the absence of induced DNA damage, checkpoint kinase-1 (CHK1), an enzyme essential for preventing mitosis in response to DNA damage, functions as a mitogen-dependent protein kinase that prevents premature differentiation of TS cells into TG cells by suppressing expression of p21 and p57, but not p27, the CDK inhibitor that regulates mitotic cell cycles. CHK1 phosphorylates p21 and p57 proteins at specific sites, thereby targeting them for degradation by the 26S proteasome. TG cells lack CHK1, and restoring CHK1 activity in TG cells suppresses expression of p57 and restores mitosis. Thus, CHK1 is part of a "G2 restriction point" that prevents premature cell cycle exit in cells programmed for terminal differentiation, a role that CHK2 cannot play.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Proteínas Quinasas/metabolismo , Células Madre/fisiología , Trofoblastos/citología , Animales , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Ratones , Proteínas Quinasas/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Madre/citología
14.
Proc Natl Acad Sci U S A ; 106(34): 14466-71, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19666479

RESUMEN

The CDC14 family of multifunctional evolutionarily conserved phosphatases includes major regulators of mitosis in eukaryotes and of DNA damage response in humans. The CDC14 function is also crucial for accurate chromosome segregation, which is exemplified by its absolute requirement in yeast for the anaphase segregation of nucleolar organizers; however the nature of this essential pathway is not understood. Upon investigation of the rDNA nondisjunction phenomenon, it was found that cdc14 mutants fail to complete replication of this locus. Moreover, other late-replicating genomic regions (10% of the genome) are also underreplicated in cdc14 mutants undergoing anaphase. This selective genome-wide replication defect is due to dosage insufficiency of replication factors in the nucleus, which stems from two defects, both contingent on the reduced CDC14 function in the preceding mitosis. First, a constitutive nuclear import defect results in a drastic dosage decrease for those replication proteins that are regulated by nuclear transport. Particularly, essential RPA subunits display both lower mRNA and protein levels, as well as abnormal cytoplasmic localization. Second, the reduced transcription of MBF and SBF-controlled genes in G1 leads to the reduction in protein levels of many proteins involved in DNA replication. The failure to complete replication of late replicons is the primary reason for chromosome nondisjunction upon CDC14 dysfunction. As the genome-wide slow-down of DNA replication does not trigger checkpoints [Lengronne A, Schwob E (2002) Mol Cell 9:1067-1078], CDC14 mutations pose an overwhelming challenge to genome stability, both generating chromosome damage and undermining the checkpoint control mechanisms.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/genética , ADN de Hongos/biosíntesis , Mutación , Proteínas Tirosina Fosfatasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular , Anafase/genética , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Segregación Cromosómica , Daño del ADN , Replicación del ADN , ADN de Hongos/genética , ADN Ribosómico/genética , Fase G1/genética , Genes Esenciales/genética , Genes Esenciales/fisiología , Genoma Fúngico/genética , Estudio de Asociación del Genoma Completo , Modelos Biológicos , Unión Proteica , Proteínas Tirosina Fosfatasas/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
15.
Methods Mol Biol ; 521: 673-87, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19563133

RESUMEN

Plasticity is an inherent feature of chromosomal DNA replication in eukaryotes. Potential origins of DNA replication are made in excess, but are used (fired) in a partly stochastic, partly programmed manner throughout the S phase of the cell cycle. Since most origins have a firing efficiency below 50%, population-based analysis methods yield a cumulative picture of origin activity (obtained by accretion) that does not accurately describe how chromosomes are replicated in single cells. DNA combing is a method that allows the alignment on silanized glass coverslips, at high density and with uniform stretching, of single DNA molecules in the Mb range. If this DNA is isolated from cells that have been labelled with halogenated nucleotides (BrdU, CldU, IdU), it is possible to determine the density and position of replication origins as well as the rate and symmetry of fork progression, quantitatively and on single DNA molecules. This chapter will successively describe (a) the preparation ofsilanized coverslips, (b) the incorporation of halogenated nucleotides in newly synthesized DNA in yeast and mammalian cell lines, (c) the preparation and combing of genomic DNA, and finally (d) the acquisition and analysis of single-molecule images to extract salient features of replication dynamics.


Asunto(s)
Replicación del ADN , Animales , Bromodesoxiuridina/metabolismo , Células Cultivadas , Replicación del ADN/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Colorantes Fluorescentes , Genómica/métodos , Humanos , Ratones , Microscopía Fluorescente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Silanos
16.
Eukaryot Cell ; 4(2): 407-20, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15701803

RESUMEN

We cloned the pheromone precursor genes of Podospora anserina in order to elucidate their role in the biology of this fungus. The mfp gene encodes a 24-amino-acid polypeptide finished by the CAAX motif, characteristic of fungal lipopeptide pheromone precursors similar to the a-factor precursor of Saccharomyces cerevisiae. The mfm gene encodes a 221-amino-acid polypeptide, which is related to the S. cerevisiae alpha-factor precursor and contains two 13-residue repeats assumed to correspond to the mature pheromone. We deleted the mfp and mfm coding sequence by gene replacement. The mutations specifically affect male fertility, without impairing female fertility and vegetative growth. The male defect is mating type specific: the mat+ Deltamfp and mat- Deltamfm mutants produce male cells inactive in fertilization whereas the mat- Deltamfp and mat+ Deltamfm mutants show normal male fertility. Genetic data indicate that both mfp and mfm are transcribed at a low level in mat+ and mat- vegetative hyphae. Northern-blot analysis shows that their transcription is induced by the mating types in microconidia (mfp by mat+ and mfm by mat-). We managed to cross Deltamfp Deltamfm strains of opposite mating type, by complementation and transient expression of the pheromone precursor gene to trigger fertilization. These crosses were fertile, demonstrating that once fertilization occurs, the pheromone precursor genes are unnecessary for the completion of the sexual cycle. Finally, we show that the constitutively transcribed gpd::mfm and gpd::mfp constructs are repressed at a posttranscriptional level by the noncognate mating type.


Asunto(s)
Secuencia de Bases , Proteínas Fúngicas , Genes Fúngicos , Genes del Tipo Sexual de los Hongos , Podospora/genética , Precursores de Proteínas , Secuencia de Aminoácidos , Fertilización , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/metabolismo , Feromonas , Podospora/citología , Podospora/fisiología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...