Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 227(12): 1364-1375, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36763010

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers activation of the NLRP3 inflammasome, which promotes inflammation and aggravates severe COVID-19. Here, we report that SARS-CoV-2 induces upregulation and activation of human caspase-4/CASP4 (mouse caspase-11/CASP11), and this process contributes to NLRP3 activation. In vivo infections performed in transgenic hACE2 humanized mice, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with the increased pulmonary parenchymal area, reduced clinical score of the disease, and reduced mortality. Assessing human samples from fatal cases of COVID-19, we found that CASP4 was expressed in patient lungs and correlated with the expression of inflammasome components and inflammatory mediators, including CASP1, IL1B, IL18, and IL6. Collectively, our data establish that CASP4/11 promotes NLRP3 activation and disease pathology, revealing a possible target for therapeutic interventions for COVID-19.


Asunto(s)
COVID-19 , Inflamasomas , Ratones , Animales , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Ratones Transgénicos
2.
Nat Commun ; 14(1): 1049, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828815

RESUMEN

Intracellular parasites from the Leishmania genus cause Leishmaniasis, a disease affecting millions of people worldwide. NLRP3 inflammasome is key for disease outcome, but the molecular mechanisms upstream of the inflammasome activation are still unclear. Here, we demonstrate that despite the absence of pyroptosis, Gasdermin-D (GSDMD) is active at the early stages of Leishmania infection in macrophages, allowing transient cell permeabilization, potassium efflux, and NLRP3 inflammasome activation. Further, GSDMD is processed into a non-canonical 25 kDa fragment. Gsdmd-/- macrophages and mice exhibit less NLRP3 inflammasome activation and are highly susceptible to infection by several Leishmania species, confirming the role of GSDMD for inflammasome-mediated host resistance. Active NLRP3 inflammasome and GSDMD are present in skin biopsies of patients, demonstrating activation of this pathway in human leishmaniasis. Altogether, our findings reveal that Leishmania subverts the normal functions of GSDMD, an important molecule to promote inflammasome activation and immunity in Leishmaniasis.


Asunto(s)
Leishmania , Leishmaniasis , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leishmania/metabolismo , Piroptosis/fisiología
3.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103544

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inflamasomas , Animales , Humanos , Agentes Inmunomoduladores , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , SARS-CoV-2
4.
Vascul Pharmacol ; 142: 106946, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34838735

RESUMEN

BACKGROUND AND PURPOSE: Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. KEY RESULTS: SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. CONCLUSION AND APPLICATIONS: SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.


Asunto(s)
COVID-19 , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , SARS-CoV-2 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
5.
Life Sci ; 276: 119376, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33781826

RESUMEN

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Asunto(s)
COVID-19/sangre , COVID-19/patología , Glicocálix/patología , Heparina/farmacología , Anciano , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/virología , COVID-19/metabolismo , Prueba de COVID-19 , Estudios de Casos y Controles , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Femenino , Glicocálix/metabolismo , Glicocálix/virología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Oxidación-Reducción , SARS-CoV-2 , Trombosis/metabolismo
6.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
7.
J Leukoc Biol ; 106(3): 631-640, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31063608

RESUMEN

The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1ß production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1ß secretion, because priming triggers robust up-regulation of pro-IL-1ß and CASP11 that are important for efficient processing of CASP1 and IL-1ß. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.


Asunto(s)
Inflamasomas/metabolismo , Leishmania mexicana/fisiología , Macrófagos/parasitología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Activación Enzimática , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/enzimología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Ligandos , Lipopolisacáridos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Parásitos/crecimiento & desarrollo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...