Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phys Med Biol ; 68(11)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37141895

RESUMEN

Objective.The scientific community has considered internal dosimetry by the Monte Carlo method the gold standard. However, there is a trade-off between simulation processing time and the statistical quality of the results that makes it a challenge to obtain accurate absorbed dose values in some situations, such as dose estimation in organs affected by cross-irradiation or limited computing power. Variance reduction techniques are used to reduce computational processing time without impairing the statistical quality of the results, such as tracking energy cutoff, secondary particle production threshold, and parallelism of different types of emissions from radionuclides.Approach.In this work, GATE Monte Carlo code and its variance reduction techniques were evaluated to calculateSvalues of organs from the international commission on radiological protection (ICRP) report 110 male phantom for the lutetium-177, iodine-131, yttrium-90, and radium-223 radionuclides. The results are compared with the data from the OpenDose collaboration.Main results.A cutoff of 5 MeV for local electron deposition and 2.0 mm of secondary particle production range resulted in a computational efficiency increase of 7.9 and 1.05 times, respectively. Simulation of ICRP 107 spectra-based source proved to be about 5 times more efficient when compared to a decay simulation usingG4RadioactiveDecay(Geant4-based radioactive decay processes). Track length estimator (TLE) and split exponential track length estimator (seTLE) techniques were used to calculate the absorbed dose of photon emissions, resulting in computational efficiency up to 29.4 and 62.5 times higher when compared to traditional simulations, respectively. In particular, the seTLE technique accelerates the simulation time by up to 1426 times, achieving a statistical uncertainty of 10% in volumes affected by cross-irradiation.Significance.The variance reduction techniques used in this work drastically reduced the simulation time and maintained the statistical quality of the calculated absorbed dose values, proving the feasibility of the use of the Monte Carlo method in internal dosimetry under challenging situations and making it viable for clinical routine or web applications.


Asunto(s)
Radiometría , Programas Informáticos , Masculino , Humanos , Método de Montecarlo , Radiometría/métodos , Simulación por Computador , Radioisótopos de Yodo , Fantasmas de Imagen
2.
J Appl Clin Med Phys ; 24(1): e13658, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36578218

RESUMEN

The assessment of risk related to medical exposures as a justification tool to assist decision-making of the medical team is not available in clinical routine. The determination of diagnostic reference levels (DRLs) for nuclear medicine (NM) procedures has been proposed as an optimization tool, but this tool has still been aimed at a standard adult individual. It is known that the activity administered, and the consequent absorbed doses in critical organs, represents the risk of a procedure being cancer induction the greatest concern, especially for young patients. Thus, the adjustment of administered activity and procedure risk to promote risk-benefit assessment is a promising tool for routine clinical use. This work aims to present a tool for determining DRLs in the administered activity related to the patient's characteristics-age group, sex, and body mass index (BMI), in order to assist the medical decision regarding the risk-benefit ratio. Thus, it is possible to assess the risk of carcinogenesis in groups of patients, considering absorbed doses in organs, cancer incidence, and mortality rates in our country. NIREA is an IT tool developed in PHP language for web environment as a friendly software. It allows the establishment of DRL and risk of cancer induced by radiation assessment through the estimation of absorbed doses in specific organs and based on the risk methodology of BEIR VII. The absorbed and effective doses were estimated based on the dose conversion factors of the radiopharmaceuticals published by the International Commission on Radiological Protection adjusted for the patient groups. Based on data from 2256 patients who underwent diagnostic procedures at National Cancer Institute between 2017 and 2019, the program was used, resulting in important information for conducting the clinical routine extracted as DRL, absorbed doses, and risk assessments, considering patient-specific data such as age, sex, and BMI. The methodology developed in this work allows NM services to keep their data available and updated regarding local DRLs, in addition to allowing the nuclear physician to know the risk of each procedure performed, extracted by individual characteristics of the patient. The affirmative is significant because the data could be used by the regulatory body of practices with ionizing radiation in Brazil to establish a reference level in Activity that has not yet existed in the country.


Asunto(s)
Neoplasias , Medicina Nuclear , Adulto , Humanos , Niveles de Referencia para Diagnóstico , Dosis de Radiación , Neoplasias/radioterapia , Radiofármacos , Valores de Referencia
3.
Appl Radiat Isot ; 189: 110387, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36137481

RESUMEN

Radium-223 dichloride (223RaCl2), approved by FDA (Food and Drug Administration) in 2013 and in Brazil by ANVISA (Agência Nacional de Vigilância Sanitária) in 2016, offers a new therapeutic option for bone metastases from castration-resistant prostate cancer (CRPC). The advantages of radionuclide therapy for bone metastases include the simultaneous treatment of multiple lesions at the same time. The activity prescription is based on the patient's body weight, disregarding the absorbed dose limit of 2 Gy in the organ at risk: bone marrow. This study focuses on Internal Dosimetry for 223RaCl2 therapy aiming to apply biokinetic models described in the literature to estimate absorbed doses in the organs of interests, especially for the bone marrow. For this purpose, the present paper compares and validates the GATE Monte Carlo simulation with the Radioactive Decay Module (RDM) and calculates a set of S-values for Radium-223 radionuclide using male and female XCAT computational models. Moreover, a comparison of S-values for Radium-223 for three male computational models with different anatomies is also evaluated, Male (standard), Pat1 (lower body weight) and Pat2 (highest body weight). A comprehensive set of S-values was calculated for the Male model, 30 source-regions and 47 target-regions, and for Female model, 30 source-regions and 42 target-regions for Radium-223 and its decay scheme: Radon-219, Polonium-215, Lead-211, Bismuth- 211, Polonium-211 and Thallium-207. The new set of S-values will facilitate absorbed dose calculations for Radium-223 therapy. In addition, Absorbed Dose Evaluation for 223RaCl2 therapy was estimated for three different biodistributions described in the literature within three male computational models. For all biodistributions, the Pat2 phantom has a greatest absorbed dose within the red marrow, when compared with Male and Pat1.


Asunto(s)
Neoplasias Óseas , Polonio , Radio (Elemento) , Radón , Bismuto/uso terapéutico , Peso Corporal , Neoplasias Óseas/secundario , Femenino , Humanos , Masculino , Método de Montecarlo , Fantasmas de Imagen , Radioisótopos/uso terapéutico , Radio (Elemento)/uso terapéutico , Talio
4.
J Med Imaging Radiat Sci ; 53(3): 374-383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850927

RESUMEN

223Radium dichloride image-based individual dosimetry requires an optimal acquisition and reconstruction protocol and proper image correction methods for theranostic applications. To assess this problem, radium-223 dichloride SPECT images were acquired from a Jaszczak simulator with a dual-headed gamma camera, LEHR collimator, 128 × 128 matrix, and total time of 32 minutes. A cylindrical PMMA phantom was used to calibrate the measurements performed with Jaszczak. The image quality parameters (noise coefficient, contrast, contrast-to-noise ratio and recovery coefficient) and septal penetration correction were calculated by MATLAB®. The best results for the investigated image quality parameters were obtained with an 89 keV energy window (24% wide) produced together with OSEM/MLEM reconstruction (8 subsets and 4 iterations) applying a Butterworth filter (order 10 and cutoff frequency of 0.48 cycles·cm-1). The successfully performed recovery coefficient parameter evaluation allows uptake correction for future patient dosimetry applications.


Asunto(s)
Medicina de Precisión , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Fantasmas de Imagen
5.
Phys Med Biol ; 65(4): 045010, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31935695

RESUMEN

Dosimetry at the cellular level has outperformed macrodosimetry in terms of agreement with toxicity effects in clinical studies. This fact has encouraged dosimetry studies aiming to quantify the absorbed doses needed to reach radiotoxicity at the cellular level and to inform recommendations on the administration of radium-223. The aim of this work is to qualitatively and quantitatively evaluate the absorbed doses of radium-223 and the interactions of the doses at the cellular level. The analysis was performed by Monte Carlo simulations in GATE using micro-CT image of a mouse. Two physics lists available in the GATE code were tested. The influence of single and multiple scattering models on the absorbed dose distribution and number of particle hits was also studied. In addition, the fuzzy c-means clustering method was used for data segmentation. The segmentation method was suitable for these analyses, particularly given that it was unsupervised. There was no significant difference in the estimated absorbed dose between the two proposed physics lists. The absorbed dose values were not significantly influenced by scattering, although single scattering resulted in twice as many interactions as multiple scattering. The absorbed dose histogram at the voxel level shows heterogeneous absorbed dose values within each shell, but the observations from the graph of the medians were comparable to those in the literature. The interaction histogram indicates 104 events, although some voxels had no interactions with alpha particles. However, the voxels did not show absorbed doses capable of deterministic effects in the deepest part of the bone marrow. The absorbed dose distribution in images of mouse trabecular bone was compatible with simple geometric models, with absorbed doses capable of deterministic effects near the bone surface. The interaction distributions need to be correlated with in vivo studies for better interpretation.


Asunto(s)
Hueso Esponjoso/diagnóstico por imagen , Método de Montecarlo , Radio (Elemento)/uso terapéutico , Microtomografía por Rayos X , Partículas alfa/uso terapéutico , Animales , Hueso Esponjoso/efectos de la radiación , Ratones , Radioisótopos/uso terapéutico , Radiometría
6.
J Appl Clin Med Phys ; 12(2): 3330, 2011 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-21587175

RESUMEN

The Brazilian Institute of Radiation Protection and Dosimetry (IRD/CNEN) carried out quality assurance regulatory audits in Brazilian radiotherapy facilities from 1995 to 2007. In this work, the set of data collected from 195 radiotherapy facilities that use high-energy photon beams are analyzed. They include results from audits in linear electron accelerators and/or Co-60 units. The inspectors of IRD/CNEN performed the dosimetry of high-energy radiotherapy photon beams according to the IAEA dosimetry protocols TRS 277 and TRS 398, and the values of measurements were compared to stated values. Other aspects of radiological protection were checked during on-site audits such as calibration certification of clinical dosimeters and portable monitors, existence and use of check source, use of barometer and thermometer, individual dose registry and training of staff. It was verified that no check source was available in 38% of the visited facilities; the training of personnel was not adequate in 9% of the facilities and the registry of accumulated individual doses was not being done in 6% of the facilities. Measurements of absorbed dose have indicated deviations in the range ± 3% for 67.6% of the cobalt-60 units and 79.6% of medical linear accelerators; 18.5% of Co-60 irradiators and 9.6% of linear accelerators presented deviations in the range 3% < δ ≤ 5%. Finally, 13.9% of Co-60 facilities and 10.8% of linear accelerator facilities presented dosimetry deviations above 5%. The effort in dosimetric quality control performed by IRD/CNEN audits has yielded positive changes that make radiation treatment facilities more reliable.


Asunto(s)
Radiometría/métodos , Radioterapia de Alta Energía/métodos , Brasil , Calibración , Isótopos de Cobalto/química , Humanos , Aceleradores de Partículas , Control de Calidad , Oncología por Radiación/normas , Protección Radiológica/métodos , Dosificación Radioterapéutica , Radioterapia de Alta Energía/normas , Seguridad , Termómetros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...