Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652591

RESUMEN

The accumulation of manganese ions is crucial for scavenging reactive oxygen species and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains - a DNA-binding domain, a dimerisation domain, and an ancillary domain - the mechanisms underlying both, metal ion activation and DNA recognition remain elusive. In this study, we present biophysical analyses and the structure of the dimerisation and DNA-binding domains of DR2539 in its holo-form and in complex with the 21 base pair pseudo-palindromic repeat of the dr1709 promoter region, shedding light on these activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix α3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small-angle X-ray scattering experiments and supported by AlphaFold modeling provides a model illustrating the conformational changes induced upon metal binding.

2.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38490181

RESUMEN

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Asunto(s)
Glicoproteínas de la Zona Pelúcida , Humanos , Masculino , Semen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/química , Glicoproteínas de la Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Femenino
3.
IUCrJ ; 11(Pt 2): 237-248, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446456

RESUMEN

Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.


Asunto(s)
Arabidopsis , Microfluídica , Cristalografía , Cognición , Convección
4.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 16-25, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088897

RESUMEN

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump-probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump-probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm-2, providing experimental laser and delay parameters for a successful TR-MX experiment.


Asunto(s)
Proteínas , Sincrotrones , Análisis Espectral , Proteínas/química , Cristalografía , Luz
5.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 668-672, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463110

RESUMEN

Fixed-target crystallography has become a widely used approach for serial crystallography at both synchrotron and X-ray free-electron laser (XFEL) sources. A plethora of fixed targets have been developed at different facilities and by various manufacturers, with different characteristics and dimensions and with little or no emphasis on standardization. These many fixed targets have good reasons for their design, shapes, fabrication materials and the presence or absence of apertures and fiducials, reflecting the diversity of serial experiments. Given this, it would be a Sisyphean task to design and manufacture a new standard fixed target that would satisfy all possible experimental configurations. Therefore, a simple standardized descriptor to fully describe fixed targets is proposed rather than a standardized device. This descriptor is a dictionary that could be read by fixed-target beamline software and straightforwardly allow data collection from fixed targets new to that beamline. The descriptor would therefore allow a much easier exchange of fixed targets between sources and facilitate the uptake of new fixed targets, benefiting beamlines, users and manufacturers. This descriptor was first presented at, and was developed following, a meeting of representatives from multiple synchrotron and XFEL sources in Hamburg in January 2023.


Asunto(s)
Programas Informáticos , Sincrotrones , Cristalografía por Rayos X , Recolección de Datos , Rayos Láser
6.
J Biol Chem ; 299(1): 102784, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502921

RESUMEN

Deinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment. So far, specific regions of this complex, the collar and the stalk, remained unassigned. Here, these regions are resolved by cryo-EM and locally refined. The resulting 3D map shows that the collar region of this multiprotein complex is a trimer of the protein DR_0644, a Cu-only superoxide dismutase (SOD) identified here to be efficient in quenching reactive oxygen species. The same data also showed that the stalk region consists of a coiled coil that extends into the cell envelope for ∼280 Å, reaching the inner membrane. Finally, the orientation and localization of the complex are defined by in situ cryo-electron crystallography. The structural organization of the SDBC couples fundamental UV antenna properties with the presence of a Cu-only SOD, showing here coexisting photoprotective and chemoprotective functions. These features suggests how the SDBC and similar protein complexes, might have played a primary role as evolutive templates for the origin of photoautotrophic processes by combining primary protective needs with more independent energetic strategies.


Asunto(s)
Deinococcus , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Deinococcus/química , Deinococcus/citología , Deinococcus/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
7.
Nat Commun ; 13(1): 3880, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794124

RESUMEN

Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.


Asunto(s)
Archaea , Eucariontes , Animales , Archaea/genética , Fusión Celular , Eucariontes/genética , Células Eucariotas , Células Germinativas/metabolismo , Mamíferos
8.
J Biol Chem ; 298(6): 102031, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35577074

RESUMEN

The radiation-resistant bacterium Deinococcus radiodurans is known as the world's toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies. Its main proteinaceous unit, the S-layer deinoxanthin-binding complex (SDBC), is a hetero-oligomeric assembly known to contribute to the resistance against environmental stress and have porin functional features; however, its precise structure is unknown. Here, we resolved the structure of the SDBC at ∼2.5 Å resolution by cryo-EM and assigned the sequence of its main subunit, the protein DR_2577. This structure is characterized by a pore region, a massive ß-barrel organization, a stalk region consisting of a trimeric coiled coil, and a collar region at the base of the stalk. We show that each monomer binds three Cu ions and one Fe ion and retains one deinoxanthin molecule and two phosphoglycolipids, all exclusive to D. radiodurans. Finally, electrophysiological characterization of the SDBC shows that it exhibits transport properties with several amino acids. Taken together, these results highlight the SDBC as a robust structure displaying both protection and sieving functions that facilitates exchanges with the environment.


Asunto(s)
Proteínas Bacterianas , Carotenoides , Deinococcus , Complejos Multiproteicos , Proteínas Bacterianas/química , Carotenoides/química , Microscopía por Crioelectrón , Deinococcus/química , Complejos Multiproteicos/química
9.
Nat Struct Mol Biol ; 29(3): 190-193, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35273390

RESUMEN

Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy.


Asunto(s)
Adhesinas Bacterianas , Fimbrias Bacterianas , Adhesinas Bacterianas/genética , Cristalografía por Rayos X , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Proteínas Ligadas a GPI , Humanos , Manosa/análisis , Uromodulina/análisis , Uromodulina/química , Uromodulina/metabolismo
10.
Cell Chem Biol ; 28(1): 26-33.e8, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096052

RESUMEN

Despite possessing only 32 residues, the tsetse thrombin inhibitor (TTI) is among the most potent anticoagulants described, with sub-picomolar inhibitory activity against thrombin. Unexpectedly, TTI isolated from the fly is 2000-fold more active and 180 Da heavier than synthetic and recombinant variants. We predicted the presence of a tyrosine O-sulfate post-translational modification of TTI, prompting us to investigate the effect of the modification on anticoagulant activity. A combination of chemical synthesis and functional assays was used to reveal that sulfation significantly improved the inhibitory activity of TTI against thrombin. Using X-ray crystallography, we show that the N-terminal sulfated segment of TTI binds the basic exosite II of thrombin, establishing interactions similar to those of physiologic substrates, while the C-terminal segment abolishes the catalytic activity of thrombin. This non-canonical mode of inhibition, coupled with its potency and small size, makes TTI an attractive scaffold for the design of novel antithrombotics.


Asunto(s)
Anticoagulantes/farmacología , Proteínas Antitrombina/farmacología , Proteínas de Insectos/farmacología , Trombina/antagonistas & inhibidores , Tirosina/análogos & derivados , Animales , Anticoagulantes/síntesis química , Anticoagulantes/química , Proteínas Antitrombina/síntesis química , Proteínas Antitrombina/química , Línea Celular , Humanos , Proteínas de Insectos/síntesis química , Proteínas de Insectos/química , Estructura Molecular , Trombina/metabolismo , Moscas Tse-Tse , Tirosina/síntesis química , Tirosina/química , Tirosina/farmacología
11.
IUCrJ ; 6(Pt 4): 665-680, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316810

RESUMEN

Carrying out macromolecular crystallography (MX) experiments at cryogenic temperatures significantly slows the rate of global radiation damage, thus facilitating the solution of high-resolution crystal structures of macromolecules. However, cryo-MX experiments suffer from the early onset of so-called specific radiation damage that affects certain amino-acid residues and, in particular, the active sites of many proteins. Here, a series of MX experiments are described which suggest that specific and global radiation damage are much less decoupled at room temperature than they are at cryogenic temperatures. The results reported here demonstrate the interest in reviving the practice of collecting MX diffraction data at room temperature and allow structural biologists to favourably envisage the development of time-resolved MX experiments at synchrotron sources.

12.
IUCrJ ; 6(Pt 2): 317-330, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867929

RESUMEN

Mammalian fetuin-A and fetuin-B are abundant serum proteins with pleiotropic functions. Fetuin-B is a highly selective and potent inhibitor of metallo-peptidases (MPs) of the astacin family, which includes ovastacin in mammals. By inhibiting ovastacin, fetuin-B is essential for female fertility. The crystal structure of fetuin-B was determined unbound and in complex with archetypal astacin, and it was found that the inhibitor has tandem cystatin-type modules (CY1 and CY2). They are connected by an exposed linker with a rigid, disulfide-linked 'CPDCP-trunk', and are followed by a C-terminal region (CTR) with little regular secondary structure. The CPDCP-trunk and a hairpin of CY2 form a bipartite wedge, which slots into the active-site cleft of the MP. These elements occupy the nonprimed and primed sides of the cleft, respectively, but spare the specificity pocket so that the inhibitor is not cleaved. The aspartate in the trunk blocks the catalytic zinc of astacin, while the CY2 hairpin binds through a QWVXGP motif. The CY1 module assists in structural integrity and the CTR is not involved in inhibition, as verified by in vitro studies using a cohort of mutants and variants. Overall, the inhibition conforms to a novel 'raised-elephant-trunk' mechanism for MPs, which is reminiscent of single-domain cystatins that target cysteine peptidases. Over 200 sequences from vertebrates have been annotated as fetuin-B, underpinning its ubiquity and physiological relevance; accordingly, sequences with conserved CPDCP- and QWVXGP-derived motifs have been found from mammals to cartilaginous fishes. Thus, the raised-elephant-trunk mechanism is likely to be generally valid for the inhibition of astacins by orthologs of fetuin-B.

13.
Nat Commun ; 10(1): 925, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804345

RESUMEN

Human transthyretin (TTR) is implicated in several fatal forms of amyloidosis. Many mutations of TTR have been identified; most of these are pathogenic, but some offer protective effects. The molecular basis underlying the vastly different fibrillation behaviours of these TTR mutants is poorly understood. Here, on the basis of neutron crystallography, native mass spectrometry and modelling studies, we propose a mechanism whereby TTR can form amyloid fibrils via a parallel equilibrium of partially unfolded species that proceeds in favour of the amyloidogenic forms of TTR. It is suggested that unfolding events within the TTR monomer originate at the C-D loop of the protein, and that destabilising mutations in this region enhance the rate of TTR fibrillation. Furthermore, it is proposed that the binding of small molecule drugs to TTR stabilises non-amyloidogenic states of TTR in a manner similar to that occurring for the protective mutants of the protein.


Asunto(s)
Amiloidosis/genética , Prealbúmina/química , Prealbúmina/genética , Amiloidosis/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutación , Prealbúmina/metabolismo , Conformación Proteica , Pliegue de Proteína , Desplegamiento Proteico
14.
Nat Commun ; 9(1): 1658, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695721

RESUMEN

Spontaneous aggregation of folded and soluble native proteins in vivo is still a poorly understood process. A prototypic example is the D76N mutant of beta-2 microglobulin (ß2m) that displays an aggressive aggregation propensity. Here we investigate the dynamics of ß2m by X-ray crystallography, solid-state NMR, and molecular dynamics simulations to unveil the effects of the D76N mutation. Taken together, our data highlight the presence of minor disordered substates in crystalline ß2m. The destabilization of the outer strands of D76N ß2m accounts for the increased aggregation propensity. Furthermore, the computational modeling reveals a network of interactions with residue D76 as a keystone: this model allows predicting the stability of several point mutants. Overall, our study shows how the study of intrinsic dynamics in crystallo can provide crucial answers on protein stability and aggregation propensity. The comprehensive approach here presented may well be suited for the study of other folded amyloidogenic proteins.


Asunto(s)
Proteínas Amiloidogénicas/genética , Agregación Patológica de Proteínas/genética , Microglobulina beta-2/genética , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Amiloidosis/genética , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Mutación Puntual , Agregación Patológica de Proteínas/patología , Pliegue de Proteína , Estabilidad Proteica , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
15.
J Struct Biol ; 200(2): 124-127, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29042242

RESUMEN

Raman spectroscopy can probe the structure and conformations of specific chemical groups within proteins and may thus be used as a technique complementary to X-ray crystallography. This combined approach can be decisive in resolving ambiguities in the interpretation of enzymatic or X-ray induced processes. Here, we present an online Raman setup developed at the European Synchrotron that allows for interleaved Raman spectra acquisition and X-ray diffraction measurements with fast probe exchange and simple alignment while maintaining a high sensitivity over the entire spectral range. This device has been recently employed in the study of a covalent intermediate in the O2-dependent breakdown of uric acid by the cofactor-free enzyme urate oxidase and to monitor its decay induced by X-ray exposure.


Asunto(s)
Espectrometría Raman/métodos , Urato Oxidasa/metabolismo , Ácido Úrico/química , Cristalografía por Rayos X/métodos , Conformación Molecular , Sincrotrones , Ácido Úrico/análogos & derivados , Difracción de Rayos X/métodos
16.
Beilstein J Org Chem ; 13: 1145-1167, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28684994

RESUMEN

Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein-carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution.

17.
Cell ; 169(7): 1315-1326.e17, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622512

RESUMEN

Recognition between sperm and the egg surface marks the beginning of life in all sexually reproducing organisms. This fundamental biological event depends on the species-specific interaction between rapidly evolving counterpart molecules on the gametes. We report biochemical, crystallographic, and mutational studies of domain repeats 1-3 of invertebrate egg coat protein VERL and their interaction with cognate sperm protein lysin. VERL repeats fold like the functionally essential N-terminal repeat of mammalian sperm receptor ZP2, whose structure is also described here. Whereas sequence-divergent repeat 1 does not bind lysin, repeat 3 binds it non-species specifically via a high-affinity, largely hydrophobic interface. Due to its intermediate binding affinity, repeat 2 selectively interacts with lysin from the same species. Exposure of a highly positively charged surface of VERL-bound lysin suggests that complex formation both disrupts the organization of egg coat filaments and triggers their electrostatic repulsion, thereby opening a hole for sperm penetration and fusion.


Asunto(s)
Fertilización , Invertebrados/fisiología , Vertebrados/fisiología , Secuencia de Aminoácidos , Animales , Evolución Biológica , Proteínas del Huevo/química , Proteínas del Huevo/metabolismo , Humanos , Invertebrados/química , Invertebrados/genética , Masculino , Modelos Moleculares , Mucoproteínas/química , Mucoproteínas/metabolismo , Óvulo/química , Óvulo/metabolismo , Alineación de Secuencia , Especificidad de la Especie , Espermatozoides/química , Espermatozoides/metabolismo , Vertebrados/genética , Difracción de Rayos X , Glicoproteínas de la Zona Pelúcida/química , Glicoproteínas de la Zona Pelúcida/metabolismo
18.
Cell Rep ; 19(9): 1917-1928, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28564608

RESUMEN

Endoglin (ENG)/CD105 is an essential endothelial cell co-receptor of the transforming growth factor ß (TGF-ß) superfamily, mutated in hereditary hemorrhagic telangiectasia type 1 (HHT1) and involved in tumor angiogenesis and preeclampsia. Here, we present crystal structures of the ectodomain of human ENG and its complex with the ligand bone morphogenetic protein 9 (BMP9). BMP9 interacts with a hydrophobic surface of the N-terminal orphan domain of ENG, which adopts a new duplicated fold generated by circular permutation. The interface involves residues mutated in HHT1 and overlaps with the epitope of tumor-suppressing anti-ENG monoclonal TRC105. The structure of the C-terminal zona pellucida module suggests how two copies of ENG embrace homodimeric BMP9, whose binding is compatible with ligand recognition by type I but not type II receptors. These findings shed light on the molecular basis of the BMP signaling cascade, with implications for future therapeutic interventions in this fundamental pathway.


Asunto(s)
Endoglina/química , Endoglina/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Transducción de Señal , Telangiectasia Hemorrágica Hereditaria/metabolismo , Receptores de Activinas Tipo II/metabolismo , Cristalografía por Rayos X , Disulfuros/metabolismo , Duplicación de Gen , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad
19.
Acta Crystallogr D Struct Biol ; 72(Pt 12): 1298-1307, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27917830

RESUMEN

Until recently, genes coding for homologues of the autofluorescent protein GFP had only been identified in marine organisms from the phyla Cnidaria and Arthropoda. New fluorescent-protein genes have now been found in the phylum Chordata, coding for particularly bright oligomeric fluorescent proteins such as the tetrameric yellow fluorescent protein lanYFP from Branchiostoma lanceolatum. A successful monomerization attempt led to the development of the bright yellow-green fluorescent protein mNeonGreen. The structures of lanYFP and mNeonGreen have been determined and compared in order to rationalize the directed evolution process leading from a bright, tetrameric to a still bright, monomeric fluorescent protein. An unusual discolouration of crystals of mNeonGreen was observed after X-ray data collection, which was investigated using a combination of X-ray crystallography and UV-visible absorption and Raman spectroscopies, revealing the effects of specific radiation damage in the chromophore cavity. It is shown that X-rays rapidly lead to the protonation of the phenolate O atom of the chromophore and to the loss of its planarity at the methylene bridge.


Asunto(s)
Anfioxos/química , Proteínas Luminiscentes/química , Animales , Clonación Molecular , Cristalografía por Rayos X , Evolución Molecular Dirigida/métodos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Anfioxos/genética , Proteínas Luminiscentes/genética , Modelos Moleculares , Mutación , Conformación Proteica , Espectrometría Raman
20.
FEBS J ; 283(23): 4274-4290, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27739259

RESUMEN

DR2231 from Deinococcus radiodurans was previously functionally and structurally characterized as an all-α NTP pyrophosphohydrolase with specific dUTPase activity. dUTPases have a central role in the regulation of dUTP intracellular levels and dTTP nucleotide metabolism. DR2231 presents a conserved dimetal catalytic site, similar to all-α dimeric dUTPases, but contrary to these enzymes, it is unable to process dUDP. In this article, we present functional and structural evidence of single-point mutations that affect directly or indirectly the enzyme catalysis and provide a complete description of the all-α NTP pyrophosphohydrolase mechanism. Activity assays, isothermal titration calorimetry and the crystal structures of these mutants obtained in complex with dUMP or a dUTP analogue aid in probing the reaction mechanism. Our results demonstrate that the two metals are necessary for enzyme processing and also important to modulate the substrate binding affinity. Single-point mutations located in a structurally mobile lid-like loop show that the interactions with the nucleoside monophosphate are essential for induction of the closed conformation and ultimately for substrate processing. ß- and γ-phosphates are held in place through coordination with the second metal, which is responsible for the substrate 'gauche' orientation in the catalytic position. The lack of sufficient contacts to orient the dUDP ß-phosphate for hydrolysis explains DR2231 preference towards dUTP. Sequence and structural similarities with MazG proteins suggest that a similar mechanism might be conserved within the protein family. DATABASE: Structural data are available in the PDB under the accession numbers 5HVA, 5HWU, 5HX1, 5HYL, 5I0J, 5HZZ, 5I0M.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/enzimología , Nucleótidos de Desoxiuracil/metabolismo , Magnesio/metabolismo , Pirofosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Unión Competitiva , Biocatálisis , Calorimetría , Dominio Catalítico , Cristalografía por Rayos X , Bases de Datos de Proteínas , Deinococcus/genética , Nucleótidos de Desoxiuracil/química , Magnesio/química , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Pirofosfatasas/química , Pirofosfatasas/genética , Especificidad por Sustrato , Uridina Difosfato/química , Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...