Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Head Neck Pathol ; 14(2): 392-398, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31183746

RESUMEN

The goal of this study was to investigate the immunolocalization of inositol 1,4,5-trisphosphate receptor (IP3R) and vacuolar ATPase (V-ATPase) in ameloblastomas with special attention to the invasive front. Thirty-seven cases of previously diagnosed formalin-fixed paraffin-embedded (FFPE) human ameloblastoma samples were selected for this study. The samples were grouped according to the predominant histologic pattern and comprised twelve plexiform, eighteen follicular, and seven unicystic ameloblastomas. Of the unicystic variants, six demonstrated purely luminal and intraluminal growth, and one displayed mural extension. One granular cell variant was included in the follicular ameloblastoma group. All specimens were evaluated for IP3R and V-ATPase expression by immunohistochemistry (IHC). IP3R was positive in columnar cells, similar to ameloblasts, and non-peripheral cells in all samples. In the area of tumor protrusion and front of invasion, membranous and cystoplasmic IP3R expression was observed. In contrast, areas adjacent to tumoral protrusion demonstrated only membranous staining patterns. V-ATPase was not expressed in peripheral columnar cells of the unicystic and granular cell variants of ameloblastoma; however, strong staining was present in these cells in plexiform ameloblastomas, follicular ameloblastomas, and areas of mural growth of unicystic ameloblastomas. In areas of tumor protrusion, reactivity for V-ATPase was observed with both membranous and cytoplasmic staining, while other areas showed only membranous V-ATPase. These findings suggest that concomitant immunolocalization of IP3R and V-ATPase, with both cytoplasmic and membranous expression in the peripheral columnar cells, may indicate the invasive potential of ameloblastomas. Furthermore, these results suggest the tumoral spread of ameloblastomas may be correlated with the autophagy process and channelopathy. The expression of these proteins could establish a baseline for future research and provide therapeutic targets for treatment of ameloblastomas.


Asunto(s)
Ameloblastoma/patología , Biomarcadores de Tumor/análisis , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Maxilomandibulares/patología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Humanos , Inmunohistoquímica , Receptores de Inositol 1,4,5-Trifosfato/análisis , ATPasas de Translocación de Protón Vacuolares/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-27554376

RESUMEN

OBJECTIVE: Keratocystic odontogenic tumor (KOT) is an odontogenic neoplasm that shows aggressive clinical behavior and local invasiveness. Invadopodia are actin-rich cellular protrusions exhibiting proteolytic pericellular activity, thereby inducing focal invasion in neoplastic cells and increasing neoplasms aggressiveness. Thus, this study aimed to evaluate immunoexpression of invadopodia-related proteins, cortactin, MT1-MMP, Tks4, and Tks5, in KOT. STUDY DESIGN: Immunohistochemistry of 16 cases of KOT, eight cases of calcifying cystic odontogenic tumor (CCOT), and eight samples of the oral mucosa (OM) was carried out to assess the expression of the above described invadopodia-related proteins in the basal and suprabasal layer. RESULTS: KOT samples showed higher and significant immunoexpression of cortactin, MT1-MMP, TKs4, and TKs5 compared with the CCOT and OM samples. Significant expression of all these proteins was observed in the basal layer compared with the suprabasal layer in KOT. CONCLUSIONS: Overexpression of cortactin, MT1-MMP, TKs4, and TKs5 was observed in KOT compared with samples of CCOT and OM. These proteins were also overexpressed in the basal over the suprabasal layer of KOT samples. Taken together, these results suggest the participation of invadopodia-related proteins on the pathogenesis of this lesion.


Asunto(s)
Tumores Odontogénicos/metabolismo , Podosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Cortactina/metabolismo , Humanos , Inmunohistoquímica , Metaloproteinasa 14 de la Matriz/metabolismo , Invasividad Neoplásica , Tumores Odontogénicos/patología
3.
Tumour Biol ; 35(11): 11107-20, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25099616

RESUMEN

Ameloblastoma is an odontogenic tumor characterized by local invasiveness and frequent recurrence. The surrounding stroma, composed of different cell types and extracellular matrix (ECM), may influence ameloblastoma invasive behavior. Furthermore, tumor and stromal cells secrete matrix metalloproteases (MMPs), which, in turn, can modulate the matrix and promote the release of ECM-bound growth factors. Among these growth factors, epidermal growth factor (EGF) and its receptor, EGFR, have already been shown to stimulate MMP synthesis, suggesting that an interdependent mechanism, involving MMP activity and growth factors release, may contribute to tumor invasiveness. The aim of this study was to evaluate the effects of the EGF/EGFR signaling pathway on migration, invasion, and MMP activity, in a primary cell line derived from human ameloblastoma. We established and characterized a primary cell line (AME-1) from a human ameloblastoma sample. This cell line was transduced with human papillomavirus type 16 (HPV16) E6/E7 oncogenes, generating the AME-HPV continuous cell line. EGF, MMP2, and MMP9 expression in ameloblastoma biopsies and in the AME-HPV cell line was analyzed by immunohistochemistry and immunofluorescence, respectively. Migratory activity of EGF-treated AME-HPV cells was investigated using monolayer wound assays and Transwell chambers. EGF-induced invasion was assessed in Boyden chambers coated with Matrigel. Conditioned medium from EGF-treated cells was subjected to zymography. EGFR expression in AME-HPV cells was silenced by small interfering RNA (siRNA), to verify the relationship between this receptor and MMP secretion. Ameloblastoma samples and AME-HPV cells expressed EGF, EGFR, MMP2, and MMP9. AME-HPV cells treated with EGF showed increased rates of migration and invasion, as well as enhanced MMP2 and MMP9 activity. EGFR knockdown decreased MMP2 and MMP9 levels in AME-HPV cells. EGFR signaling downstream of EGF probably regulates migration, invasion, and MMP secretion of ameloblastoma-derived cells.


Asunto(s)
Ameloblastoma/patología , Movimiento Celular/efectos de los fármacos , Transformación Celular Viral , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Neoplasias Maxilomandibulares/patología , Metaloproteinasas de la Matriz/metabolismo , Ameloblastoma/tratamiento farmacológico , Ameloblastoma/metabolismo , Western Blotting , Proliferación Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Técnica del Anticuerpo Fluorescente , Humanos , Neoplasias Maxilomandibulares/tratamiento farmacológico , Neoplasias Maxilomandibulares/metabolismo , Invasividad Neoplásica , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Cicatrización de Heridas/efectos de los fármacos
4.
PLoS One ; 9(8): e105231, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25137137

RESUMEN

Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1) derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1). Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG). Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.


Asunto(s)
Adenoma Pleomórfico/patología , Línea Celular Tumoral/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de las Glándulas Salivales/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Adulto , Biomarcadores de Tumor/metabolismo , Aberraciones Cromosómicas , Análisis Mutacional de ADN , Humanos , Masculino , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA