Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Exp Brain Res ; 242(2): 463-475, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38170233

RESUMEN

Virtual reality (VR) technology has been widely adopted for several professional and recreational applications. Despite rapid innovation in hardware and software, one of the long prevailing issues for end users of VR is the experience of VR sickness. Females experience stronger VR sickness compared to males, and previous research has linked susceptibility to VR sickness to the menstrual cycle (Munafo et al., Exp Brain Res 235(3):889-901). Here we investigated the female versus male experience in VR sickness while playing an immersive VR game, comparing days of the menstrual cycle when hormones peak: day 15 (ovulation-peak estrogen) and day 22 (mid-luteal phase-peak progesterone). We found that immersion duration was greater in the second session than the first, and discomfort was lessened, suggesting a powerful adaptation with repeated exposure. Due to the estrogen levels changing along with the exposure, there was no clear independent impact of that; note, though, that there was a significant difference between self-report and physiological measures implying that GSR is potentially an unreliable measure of motion sickness. Although prior work found a delay over 2 days between session would not allow adaptation and habituation to reduce VR sickness susceptibility, we found that a week delay has potential success.


Asunto(s)
Mareo por Movimiento , Realidad Virtual , Humanos , Masculino , Femenino , Caracteres Sexuales , Interfaz Usuario-Computador , Estrógenos
2.
J Sex Res ; 61(2): 299-312, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36795115

RESUMEN

Sex differences in mate preferences are ubiquitous, having been evidenced across generations and cultures. Their prevalence and persistence have compellingly placed them in the evolutionarily adaptive context of sexual selection. However, the psycho-biological mechanisms contributing to their generation and maintenance remain poorly understood. As such a mechanism, sexual attraction is assumed to guide interest, desire, and the affinity toward specific partner features. However, whether sexual attraction can indeed explain sex differences in partner preferences has not been explicitly tested. To better understand how sex and sexual attraction shape mate preferences in humans we assessed how partner preferences differed across the spectrum of sexual attraction in a sample of 479 individuals that identified as asexual, gray-sexual, demisexual or allosexual. We further tested whether romantic attraction predicted preference profiles better than sexual attraction. Our results show that sexual attraction accounts for highly replicable sex differences in mate preferences for high social status and financial prospects, conscientiousness, and intelligence; however, it does not account for the enhanced preference for physical attractiveness expressed by men, which persists even in individuals with low sexual attraction. Instead, sex differences in physical attractiveness preference are better explained by the degree of romantic attraction. Furthermore, effects of sexual attraction on sex differences in partner preferences were grounded in current rather than previous experiences of sexual attraction. Taken together, the results support the idea that contemporary sex differences in partner preferences are maintained by several psycho-biological mechanisms that evolved in conjunction, including not only sexual but also romantic attraction.


Asunto(s)
Caracteres Sexuales , Conducta Sexual , Humanos , Femenino , Masculino , Parejas Sexuales
3.
J Hazard Mater ; 464: 132956, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976853

RESUMEN

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Asunto(s)
Aluminio , Secale , Secale/genética , Secale/metabolismo , Aluminio/toxicidad , Malatos/metabolismo , Malatos/farmacología , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Azúcares
4.
Elife ; 122023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737580

RESUMEN

The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed two groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.


Asunto(s)
Encéfalo , Cerebelo , Animales , Filogenia , Cerebelo/anatomía & histología , Mamíferos , Tamaño Corporal
5.
BMJ Open ; 13(6): e073337, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369427

RESUMEN

INTRODUCTION: Clinical reasoning (CR) is a key competence for physicians and a major source of damaging medical errors. Many strategies have been explored to improve CR quality, most of them based on knowledge enhancement, cognitive debiasing and the use of analytical reasoning. If increasing knowledge and fostering analytical reasoning have shown some positive results, the impact of debiasing is however mixed. Debiasing and promoting analytical reasoning have also been criticised for their lack of pragmatism. Alternative means of increasing CR quality are therefore still needed. Because emotions are known to influence the quality of reasoning in general, we hypothesised that emotional competence (EC) could improve physicians' CR. EC refers to the ability to identify, understand, express, regulate and use emotions. The influence of EC on CR remains unclear. This article presents a scoping review protocol, the aim of which will be to describe the current state of knowledge concerning the influence of EC on physicians' CR, the type of available literature and finally the different methods used to examine the link between EC and CR. METHOD AND ANALYSIS: The population of interest is physicians and medical students. EC will be explored according to the model of Mikolajczak et al, describing five major components of EC (identify, understand, express, regulate and use emotions). The concept of CR will include terms related to its processes and outcomes. Context will include real or simulated clinical situations. The search for primary sources and reviews will be conducted in MEDLINE (via Ovid), Scopus and PsycINFO. The grey literature will be searched in the references of included articles and in OpenGrey. Study selection and data extraction will be conducted using the Covidence software. Search and inclusion results will be reported using the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping review model (PRISMA-ScR). ETHICS AND DISSEMINATION: There are no ethical or safety concerns regarding this review. REGISTRATION DETAILS: OSF Registration DOI: https://doi.org/10.17605/OSF.IO/GM7YD.


Asunto(s)
Médicos , Estudiantes de Medicina , Humanos , Razonamiento Clínico , Proyectos de Investigación , Revisiones Sistemáticas como Asunto , Literatura de Revisión como Asunto
6.
Commun Biol ; 6(1): 636, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311857

RESUMEN

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Asunto(s)
Encéfalo , Fósiles , Filogenia , Arqueología , Artefactos
7.
Commun Biol ; 6(1): 655, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344566

RESUMEN

Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.


Asunto(s)
Enfermedad de Alzheimer , Animales , Gatos , Perros , Humanos , Ratones , Envejecimiento , Encéfalo , Mascotas , Placa Amiloide
8.
Front Psychol ; 14: 1043088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034962

RESUMEN

We sought to understand how the perception of personal space is influenced by different levels of social density, spatial density, and type of window-view in South Korean and United Kingdom workplaces. We employed virtual reality to simulate shared and single occupancy offices. We obtained personal space estimations using a virtual disc around the participant which could be extended and retracted, inside the simulation, to indicate perceived amount of personal space, and compared this measure to questionnaire-based estimations. We found that in both cultures participants experienced greater perceived personal space (1) when in a sparse rather than dense office and (2) having a view of the city outside the office. However, British, but not Korean, participants had significantly higher personal space estimations in single occupancy offices than in shared offices. These results suggest subtle cross-cultural differences in workplace experience, that could only be investigated using virtual reality.

9.
Prog Brain Res ; 275: 165-215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36841568

RESUMEN

This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedades Neurodegenerativas/patología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Genómica , Mamíferos
10.
Prog Brain Res ; 275: 217-232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36841569

RESUMEN

An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.


Asunto(s)
Hominidae , Animales , Humanos , Filogenia , Evolución Biológica , Tamaño de los Órganos , Fósiles
11.
Environ Pollut ; 315: 120313, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228849

RESUMEN

Aluminum (Al) toxicity limits crops growth and production in acidic soils. Compared to roots, less is known about the toxic effects of Al in leaves. Al subcellular compartmentalization is also largely unknown. Using rye (Secale cereale L.) Beira (more tolerant) and RioDeva (more sensitive to Al) genotypes, we evaluated the patterns of Al accumulation in leaf cell organelles and the photosynthetic and metabolic changes to cope with Al toxicity. The tolerant genotype accumulated less Al in all organelles, except the vacuoles. This suggests that Al compartmentalization plays a role in Al tolerance of Beira genotype. PSII efficiency, stomatal conductance, pigment biosynthesis, and photosynthesis metabolism were less affected in the tolerant genotype. In the Calvin cycle, carboxylation was compromised by Al exposure in the tolerant genotype. Other Calvin cycle-related enzymes, phoshoglycerate kinase (PGK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triose-phosphate isomerase (TPI), and fructose 1,6-bisphosphatase (FBPase) activities decreased in the sensitive line after 48 h of Al exposure. Consequentially, carbohydrate and organic acid metabolism were affected in a genotype-specific manner, where sugar levels increased only in the tolerant genotype. In conclusion, Al transport to the leaf and compartmentalization in the vacuoles tolerant genotype's leaf cells provide complementary mechanisms of Al tolerance, protecting the photosynthetic apparatus and thereby sustaining growth.


Asunto(s)
Aluminio , Secale , Secale/genética , Secale/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Fotosíntesis , Hojas de la Planta , Raíces de Plantas/metabolismo
12.
Cogn Affect Behav Neurosci ; 22(5): 904-951, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35589909

RESUMEN

This integrative review rearticulates the notion of human aesthetics by critically appraising the conventional definitions, offerring a new, more comprehensive definition, and identifying the fundamental components associated with it. It intends to advance holistic understanding of the notion by differentiating aesthetic perception from basic perceptual recognition, and by characterizing these concepts from the perspective of information processing in both visual and nonvisual modalities. To this end, we analyze the dissociative nature of information processing in the brain, introducing a novel local-global integrative model that differentiates aesthetic processing from basic perceptual processing. This model builds on the current state of the art in visual aesthetics as well as newer propositions about nonvisual aesthetics. This model comprises two analytic channels: aesthetics-only channel and perception-to-aesthetics channel. The aesthetics-only channel primarily involves restricted local processing for quality or richness (e.g., attractiveness, beauty/prettiness, elegance, sublimeness, catchiness, hedonic value) analysis, whereas the perception-to-aesthetics channel involves global/extended local processing for basic feature analysis, followed by restricted local processing for quality or richness analysis. We contend that aesthetic processing operates independently of basic perceptual processing, but not independently of cognitive processing. We further conjecture that there might be a common faculty, labeled as aesthetic cognition faculty, in the human brain for all sensory aesthetics albeit other parts of the brain can also be activated because of basic sensory processing prior to aesthetic processing, particularly during the operation of the second channel. This generalized model can account not only for simple and pure aesthetic experiences but for partial and complex aesthetic experiences as well.


Asunto(s)
Belleza , Cognición , Encéfalo , Estética , Humanos , Percepción
13.
Neurosci Biobehav Rev ; 134: 104550, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074313

RESUMEN

Research on the origin of vision and vision loss in naturally "blind" animal species can reveal the tasks that vision fulfills and the brain's role in visual experience. Models that incorporate evolutionary history, natural variation in visual ability, and experimental manipulations can help disentangle visual ability at a superficial level from behaviors linked to vision but not solely reliant upon it, and could assist the translation of ophthalmological research in animal models to human treatments. To unravel the similarities between blind individuals and blind species, we review concepts of "blindness" and its behavioral correlates across a range of species. We explore the ancestral emergence of vision in vertebrates, and the loss of vision in blind species with reference to an evolution-based classification scheme. We applied phylogenetic comparative methods to a mammalian tree to explore the evolution of visual acuity using ancestral state estimations. Future research into the natural history of vision loss could help elucidate the function of vision and inspire innovations in how to address vision loss in humans.


Asunto(s)
Historia Natural , Trastornos de la Visión , Animales , Ceguera , Humanos , Mamíferos , Filogenia , Vertebrados
14.
Arch Sex Behav ; 50(8): 3785-3797, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33851315

RESUMEN

Cross-cultural research has repeatedly demonstrated sex differences in the importance of partner characteristics when choosing a mate. Men typically report higher preferences for younger, more physically attractive women, while women typically place more importance on a partner's status and wealth. As the assessment of such partner characteristics often relies on visual cues, this raises the question whether visual experience is necessary for sex-specific mate preferences to develop. To shed more light onto the emergence of sex differences in mate choice, the current study assessed how preferences for attractiveness, resources, and personality factors differ between sighted and blind individuals using an online questionnaire. We further investigate the role of social factors and sensory cue selection in these sex differences. Our sample consisted of 94 sighted and blind participants with different ages of blindness onset: 19 blind/28 sighted males and 19 blind/28 sighted females. Results replicated well-documented findings in the sighted, with men placing more importance on physical attractiveness and women placing more importance on status and resources. However, while physical attractiveness was less important to blind men, blind women considered physical attractiveness as important as sighted women. The importance of a high status and likeable personality was not influenced by sightedness. Blind individuals considered auditory cues more important than visual cues, while sighted males showed the opposite pattern. Further, relationship status and indirect, social influences were related to preferences. Overall, our findings shed light on the availability of visual information for the emergence of sex differences in mate preference.


Asunto(s)
Señales (Psicología) , Conducta Sexual , Ceguera , Conducta de Elección , Femenino , Humanos , Masculino , Personalidad , Caracteres Sexuales
15.
Evolution (N Y) ; 14(1): 5, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33786157

RESUMEN

BACKGROUND: People with visual impairment have benefitted from recent developments of assistive technology that aim to decrease socio-economic inequality. However, access to post-secondary education is still extremelly challenging, especially for scientific areas. The under representation of people with visual impairment in the evolution research community is connected with the vision-based communication of evolutionary biology knowledge and the accompanying lack of multisensory alternatives for learning. RESULTS: Here, we describe the development of an inclusive outreach activity based on a multisensory phylogeny representing 20 taxonomic groups. We provide a tool kit of materials and ideas that allow both the replication of this activity and the adaptation of others, to include people with visual impairment. Furthermore, we provide activity evaluation data, a discussion of the lessons learned and an inclusive description of all figures and visual data presented.The presented baseline data show that people with visual impairment indeed have lack of access to education but are interested in and apt to understand evolutionary biology concepts and predict evolutionary change when education is inclusive. CONCLUSIONS: We show that, with creative investment, basic evolutionary knowledge is perfectly possible to be transmitted through multisensory activities, which everyone can benefit from. Ultimately, we hope this case study will provide a baseline for future initiatives and a more inclusive outreach community.

16.
Psychol Neurosci ; 14(3): 298-334, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36937077

RESUMEN

Objective: Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods: To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results: Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions: The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.

17.
Sci Rep ; 10(1): 16401, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009431

RESUMEN

Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a role in protecting plants against various abiotic stresses. Using the relatively Al-tolerant cereal rye (Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes differing in Al tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the mechanisms were different and were also different between roots and shoots. The Al-tolerant genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous activation of the ornithine (Orn)-biosynthetic pathway and decrease in Pro oxidation. The Orn pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios demonstrate that N-metabolism is less inhibited in the Al-tolerant line. The correlation between Pro changes and differences in Al-sensitivity between these two genotypes, supports a role for Pro in Al tolerance. Our results suggest that differential responses in Pro biosynthesis may be linked to N-availability. Understanding the role of Pro in differences between genotypes in stress responses, could be valuable in plant selection and breeding for Al resistance.


Asunto(s)
Aluminio/toxicidad , Prolina/metabolismo , Secale/efectos de los fármacos , Secale/metabolismo , Transducción de Señal/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Cruzamiento/métodos , Genotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Secale/genética , Estrés Fisiológico/efectos de los fármacos
18.
Appl Ergon ; 85: 103072, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32174360

RESUMEN

Visual-to-auditory sensory substitution devices (SSDs) provide improved access to the visual environment for the visually impaired by converting images into auditory information. Research is lacking on the mechanisms involved in processing data that is perceived through one sensory modality, but directly associated with a source in a different sensory modality. This is important because SSDs that use auditory displays could involve binaural presentation requiring both ear canals, or monaural presentation requiring only one - but which ear would be ideal? SSDs may be similar to reading, as an image (printed word) is converted into sound (when read aloud). Reading, and language more generally, are typically lateralised to the left cerebral hemisphere. Yet, unlike symbolic written language, SSDs convert images to sound based on visuospatial properties, with the right cerebral hemisphere potentially having a role in processing such visuospatial data. Here we investigated whether there is a hemispheric bias in the processing of visual-to-auditory sensory substitution information and whether that varies as a function of experience and visual ability. We assessed the lateralization of auditory processing with two tests: a standard dichotic listening test and a novel dichotic listening test created using the auditory information produced by an SSD, The vOICe. Participants were tested either in the lab or online with the same stimuli. We did not find a hemispheric bias in the processing of visual-to-auditory information in visually impaired, experienced vOICe users. Further, we did not find any difference between visually impaired, experienced vOICe users and sighted novices in the hemispheric lateralization of visual-to-auditory information processing. Although standard dichotic listening is lateralised to the left hemisphere, the auditory processing of images in SSDs is bilateral, possibly due to the increased influence of right hemisphere processing. Auditory SSDs might therefore be equally effective with presentation to either ear if a monaural, rather than binaural, presentation were necessary.


Asunto(s)
Percepción Auditiva/fisiología , Auxiliares Sensoriales , Trastornos de la Visión/fisiopatología , Visión Ocular/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Pruebas de Audición Dicótica , Femenino , Lateralidad Funcional , Humanos , Lenguaje , Aprendizaje , Masculino
19.
Proc Biol Sci ; 286(1914): 20191712, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662078

RESUMEN

The hippocampus is well known for its roles in spatial navigation and memory, but it is organized into regions that have different connections and functional specializations. Notably, the region CA2 has a role in social and not spatial cognition, as is the case for the regions CA1 and CA3 that surround it. Here, we investigated the evolution of the hippocampus in terms of its size and organization in relation to the evolution of social and ecological variables in primates, namely home range, diet and different measures of group size. We found that the volumes within the whole cornu ammonis coevolve with group size, while only the volume of CA1 and subiculum can also be predicted by home range. On the other hand, diet, expressed as a shift from folivory towards frugivory, was shown to not be related to hippocampal volume. Interestingly, CA2 was shown to exhibit phylogenetic signal only against certain measures of group size, but not with ecological factors. We also found that sex differences in the hippocampus are related to body size sex dimorphism. This is in line with reports of sex differences in hippocampal volume in non-primates that are related to social structure and sex differences in behaviour. Our findings support the notion that in primates, the hippocampus is a mosaic structure evolving in line with social pressures, where certain subsections evolve in line with spatial ability too.


Asunto(s)
Dieta , Hipocampo/anatomía & histología , Primates/fisiología , Animales , Primates/anatomía & histología , Caracteres Sexuales , Lóbulo Temporal
20.
Sci Total Environ ; 693: 133636, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31377375

RESUMEN

Aluminum (Al) toxicity is a major constraint for crop production in acid soils. Therefore, looking for sustainable solutions to increase plant tolerance to Al toxicity is needed. Although several studies addressed the potential utilization of silica or silicon dioxide nanoparticles (SNPs) to ameliorate heavy metal phytotoxicity, the exact mechanisms underlying SNPs-induced stress tolerance are still unknown. The current study investigated how SNPs could mitigate Al toxicity in maize plants grown on acidic soil. The impact of Al alone or in combination with SNPs on Al accumulation and detoxification, plant growth, photosynthetic C assimilation and redox homeostasis has been investigated. Al accumulation in stressed-maize organs reduced their growth, decreased photosynthesis related parameters and increased production of reactive oxygen species, through induced NADPH oxidase and photorespiration activities, and cell damage. These effects were more pronounced in roots than in leaves. SNPs ameliorated Al toxicity at growth, physiological and oxidative damage levels. Co-application of SNPs significantly reduced the activities of the photorespiratory enzymes and NADPH oxidase. It stimulated the antioxidant defense systems at enzymatic (superoxide dismutase, catalase, ascorbate and glutathione peroxidases) and non-enzymatic (ascorbate, glutathione, polyphenols, flavonoids, tocopherols, and FRAP) levels. Moreover, SNPs increased organic acids accumulation and metal detoxification (i.e. glutathione-S-transferase activity) in roots, as a protective mechanism against Al toxicity. The SNPs induced-protective mechanisms was dependent on the applied Al concentration and acted in organ-specific manner. Overall, the current study suggests the promising application of SNPs as an innovative approach to mitigate Al phytotoxicity in acidic soils and provides a comprehensive view of the cellular and biochemical mechanisms underlying this mitigation capacity.


Asunto(s)
Aluminio/toxicidad , Nanopartículas/química , Dióxido de Silicio/química , Contaminantes del Suelo/toxicidad , Zea mays/fisiología , Antioxidantes , Ascorbato Peroxidasas , Ácido Ascórbico , Catalasa , Glutatión , Metales Pesados , Oxidación-Reducción , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta , Raíces de Plantas , Especies Reactivas de Oxígeno , Suelo , Superóxido Dismutasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...