Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35665831

RESUMEN

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Asunto(s)
Dimetilfumarato , Fármacos Neuroprotectores , Animales , Astrocitos , Depresión , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Microglía , Factor 2 Relacionado con NF-E2 , Receptores Acoplados a Proteínas G , Transducción de Señal , Factor de Necrosis Tumoral alfa
2.
Eur Neuropsychopharmacol ; 42: 57-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191076

RESUMEN

Immune-inflammatory mechanisms are involved in the pathophysiology of bipolar disorder. Tetracyclines present neuroprotective actions based on their anti-inflammatory and microglia suppressant effects. Doxycycline (DOXY) is a tetracycline that demonstrates a better usage profile with protective actions against inflammation and CNS injury. Here, we investigated the effects of DOXY against behavioral, neuroinflammatory, and pro-oxidative changes induced by the d-amphetamine mania model. Adult mice were given d-amphetamine 2.0 mg/kg or saline for 14 days. Between days 8 and 14, received lithium, DOXY (25 or 50 mg/kg), or their combination (lithium+DOXY) on both doses. We collected the brain areas prefrontal cortex (PFC), hippocampus, and amygdala to evaluate inflammatory and oxidative alterations. D-amphetamine induced hyperlocomotion and impairment in recognition and working memory. Lithium reversed hyperlocomotion but could not restore cognitive alterations. DOXY alone (at both doses) or combined with lithium reversed d-amphetamine-induced cognitive changes. DOXY, better than lithium, reversed the d-amphetamine-induced rise in TNFα, MPO, and lipid peroxidation. DOXY reduced the hippocampal expression of Iba1 (a marker of microglial activation), inducible nitric oxide synthase (iNOS), and nitrite. Combined with lithium, DOXY increased the phosphorylated (inactivated) form of GSK3ß (Ser9). Therefore, DOXY alone or combined with lithium reversed cognitive impairment and neuroinflammation induced by the mice's d-amphetamine model. This study points to DOXY as a promising adjunctive tool for bipolar disorder treatment focused on cognition and neuroimmune changes. Our data provide the first rationale for clinical trials investigating DOXY therapeutic actions in bipolar disorder mania.


Asunto(s)
Trastorno Bipolar , Disfunción Cognitiva , Animales , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Dextroanfetamina/farmacología , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Reposicionamiento de Medicamentos , Manía , Ratones , Enfermedades Neuroinflamatorias , Estrés Oxidativo
3.
Artículo en Inglés | MEDLINE | ID: mdl-31954756

RESUMEN

Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 µg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Dextroanfetamina/toxicidad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Liraglutida/administración & dosificación , Litio/administración & dosificación , Manía/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Animales , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/psicología , Sinergismo Farmacológico , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Manía/inducido químicamente , Manía/psicología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , Ratones
4.
Brain Res Bull ; 149: 60-74, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004733

RESUMEN

Sildenafil is a phosphodiesterase 5 inhibitor used for the treatment of erectile dysfunction and pulmonary hypertension. Proconvulsant effect is a serious adverse event associated with sildenafil use. Here, we investigated the possible proconvulsant effects of sildenafil in pilocarpine (PILO)-induced seizures model, which mimics some aspects of temporal lobe epilepsy. We also evaluated sildenafil's effects on hippocampal markers related to PILO-induced seizure, for instance, acetylcholinesterase (AChE) activity, oxidative stress and nitric oxide (NO) markers, namely nitrite, inducible NO synthase (iNOS) and neuronal NOS (nNOS). The influences of muscarinic receptors blockade on sildenafil proconvulsant effects and brain nitrite levels were also evaluated. Male mice were submitted to single or repeated (7 days) sildenafil administration (2.5, 5, 10 and 20 mg/kg). Thirty minutes later, PILO was injected and mice were further evaluated for 1 h for seizure activity. Sildenafil induced a dose- and time-progressive proconvulsant effect in PILO-induced seizures. Sildenafil also potentiated the inhibitory effect of PILO in AChE activity and induced a further increase in nitrite levels and pro-oxidative markers, mainly in the hippocampus. Repeated sildenafil treatment also increased the hippocampal expression of iNOS and nNOS isoforms, while the blockade of muscarinic receptors attenuated both sildenafil-induced proconvulsant effect and brain nitrite changes. Our data firstly demonstrated the proconvulsant effect of sildenafil in PILO-model of seizures. This effect seems to be related to an increased cholinergic-nitrergic tone and pro-oxidative brain changes. Also, our findings advert to caution in using sildenafil for patients suffering from neurological conditions that reduces seizure threshold, such as epilepsy.


Asunto(s)
Convulsiones/etiología , Citrato de Sildenafil/efectos adversos , Citrato de Sildenafil/farmacología , Acetilcolinesterasa/metabolismo , Animales , GMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Pilocarpina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Convulsiones/fisiopatología , Citrato de Sildenafil/metabolismo
5.
Biomed Pharmacother ; 109: 429-439, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30399578

RESUMEN

Kindling is a model for studying epileptogenesis and associated neuropsychiatric conditions. The antiepileptic drug levetiracetam (LEV) presents anti-kindling properties, but some severe neuropsychiatric events, especially depression, have been associated with its use in epileptic patients. The positive modulation of glucagon-like peptide-1 (GLP-1) receptors emerged as a potential target for the treatment of epilepsy and other neurological disorders. Here, we investigated behavioral and neurochemical effects of liraglutide (LIRA), a GLP-1 receptor agonist, alone or combined with LEV in mice subjected to PTZ-induced kindling. Male mice received PTZ on alternate days for 21 days. Before PTZ, the animals received LIRA, LEV (alone or in combination with LIRA) or saline. After seizures staging according to Racine's scale, behavioral evaluations were performed to verify anxiety-, depressive-like and cognitive performance. Brain oxidative alterations and BDNF levels were also measured. LEV showed anti-kindling properties, but aggravated depressive-like behavior in PTZ-kindling. In control conditions, LEV induced a pro-depressant effect and impaired avoidance memory retention. LIRA delayed but did not prevent the full kindling development. LIRA prevented the depressive-like behavior induced by PTZ kindling and PTZ + LEV. LEV + LIRA protected against PTZ-induced anxiety-like alterations and impairments in locomotion and cognition. Furthermore, LEV + LIRA reduced nitrite levels and lipid peroxidation in the hippocampus and prefrontal cortex, while it increased reduced glutathione levels in all evaluated brain areas. LIRA or LEV + LIRA increased hippocampal BDNF levels. In conclusion, our results showed that LIRA can be a promising adjunctive therapy for epilepsy-related neuropsychiatric comorbidities and to improve the management of antiepileptic drug associated behavioral adverse effects.


Asunto(s)
Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Encéfalo/metabolismo , Péptido 1 Similar al Glucagón/agonistas , Excitación Neurológica/metabolismo , Levetiracetam/administración & dosificación , Liraglutida/administración & dosificación , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Encéfalo/efectos de los fármacos , Comorbilidad , Quimioterapia Combinada , Excitación Neurológica/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Pentilenotetrazol/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
6.
Neurochem Int ; 120: 33-42, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30041016

RESUMEN

Riparin II (RIP II) is an alkamide isolated from Aniba riparia that has presented antidepressant and anxiolytic effects in acute stress behavioral models. This study aimed to investigate the activity of RIP II in a corticosterone-induced depression mice model. Corticosterone (20 mg/kg, s.c.) was administered once a day for 21 days. RIP II (50 mg/kg, p.o.) or fluvoxamine (FLU, 50 mg/kg, standard antidepressant, p.o.) was administered after corticosterone (CORT) injection, for the last 7 days of CORT treatment. Mice were exposed to the following behavioral tests: forced swimming, tail suspension, open field, sucrose preference, elevated plus maze and ymaze. After behavioral evaluation, brain areas (prefrontal cortex, hippocampus and striatum) were dissected for neurochemical evaluation: oxidative stress parameters (MDA, nitrite and GSH) and BDNF dosage. Repeated CORT administration caused depressive-like behavior in mice as indicated by increased despair effects in forced swimming and tail suspension tests and anhedonia in sucrose preference test. In addition, CORT decreased BDNF levels in the mice hippocampus and induced oxidative load in the brain with significative increase in pro-oxidant markers (lipid peroxidation and nitrite levels) and a decline in anti-oxidant defense system (reduced glutathione levels), indicating a direct effect of stress hormones in the induction of the brain oxidative stress. On the other hand, RIP II treatment reversed CORT-induced depressive-like behavior. Furthermore, this treatment reversed the impairment in BDNF levels and oxidative brain insults caused by CORT. This may demonstrate the mechanisms involved in antidepressant-like effect of RIP II. These findings further support that RIP II may be implicated as pharmacological intervention targeting depression associated with HPA-axis dysregulation.


Asunto(s)
Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Hipocampo/efectos de los fármacos , Tiramina/análogos & derivados , Animales , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona/farmacología , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tiramina/farmacología
7.
Life Sci ; 141: 137-42, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26407472

RESUMEN

AIMS: Methylphenidate (MPD) is increasingly prescribed for the treatment of Attention Deficit Hyperactivity Disorder and there are concerns about its appropriate use. Furthermore, little is known about the potential nephrotoxicity in patients using MPD. This study aimed to investigate the safety of MPD, with focus on the possible effects of this drug on renal function. MAIN METHODS: We investigated the effects of MPD on renal perfusion system and renal tubular cells through in vivo and in vitro experimental models. KEY FINDINGS: In the in vivo experiments, 24 h and 48 h after MPD administration, urea, creatinine, creatinine clearance, and the fractional excretion of sodium and potassium were not changed. In the isolated kidney perfusion, MPD significantly reduced urinary flow, glomerular filtration rate and the percentage of tubular sodium transport. However, the perfusion pressure, renal vascular resistance and the percentage of tubular potassium transport were unchanged in this system. In the canine renal epithelial cell line MDCK culture, MPD was not cytotoxic and, in histopathological analysis, MPD did not promote alterations. SIGNIFICANCE: Our findings suggest a possible nephrotoxic effect of MPD, since it altered renal function by reducing the glomerular activity, urinary flow and sodium transport. These effects need to be further investigated in order to minimize potential harms associated with the use of MPD.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Enfermedades Renales/inducido químicamente , Metilfenidato/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Creatinina/metabolismo , Perros , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Técnicas In Vitro , Enfermedades Renales/patología , Pruebas de Función Renal , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Células de Riñón Canino Madin Darby , Masculino , Potasio/metabolismo , Ratas , Circulación Renal/efectos de los fármacos , Sodio/metabolismo , Urea/metabolismo , Urodinámica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...