Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(5): e0007124, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38629875

RESUMEN

Bovine mastitis is a frequent infection in lactating cattle, causing great economic losses. Staphylococcus aureus represents the main etiological agent, which causes recurrent and persistent intramammary infections because conventional antibiotics are ineffective against it. Mastoparan-like peptides are multifunctional molecules with broad antimicrobial potential, constituting an attractive alternative. Nevertheless, their toxicity to host cells has hindered their therapeutic application. Previously, our group engineered three mastoparan-L analogs, namely mastoparan-MO, mastoparan-R1, and [I5, R8] MP, to improve cell selectivity and potential. Here, we were interested in comparing the antibacterial efficacy of mastoparan-L and its analogs against bovine mastitis isolates of S. aureus strains, making a correlation with the physicochemical properties and structural arrangement changes promoted by the sequence modifications. As a result, the analog's hemolytic and/or antimicrobial activity was balanced. All the peptides displayed α-helical folding in hydrophobic and membrane-mimetic environments, as determined by circular dichroism. The peptide [I5, R8] MP stood out for its enhanced selectivity and antibacterial features related to mastoparan-L and the other derivatives. Biophysical approaches revealed that [I5, R8] MP rapidly depolarizes the bacterial membrane of S. aureus, causing cell death by subsequent membrane disruption. Our results demonstrated that the [I5, R8] MP peptide could be a starting point for the development of peptide-based drugs for the treatment of bovine mastitis, with the advantage of no residue in milk, which would help reduce the use of classical antibiotics.IMPORTANCEStaphylococcus aureus is a leading cause of mastitis, the world's most important dairy cattle disease. The multidrug resistance and zoonotic potential of S. aureus, besides the likelihood of antibiotic residues in milk, are of critical concern to public and animal health. Antimicrobial peptides offer a novel antimicrobial strategy. Here, we demonstrate that [I5, R8] MP is a potent and selective peptide, which acts on S. aureus by targeting the bacterial membrane. Therefore, understanding the physicochemical determinants and the modes of action of this class of antimicrobials opens novel prospects for peptide development with enhanced activities in the bovine mastitis context.


Asunto(s)
Antibacterianos , Péptidos y Proteínas de Señalización Intercelular , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Bovinos , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Femenino , Antibacterianos/farmacología , Antibacterianos/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Venenos de Avispas/farmacología , Venenos de Avispas/química
2.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688746

RESUMEN

Bacterial resistance is a threat to health worldwide, mainly due to reduced effective treatment. In this context, the search for strategies to control such infections and suppress antimicrobial resistance is necessary. One of the strategies that has been used is combination therapy. In the present work, we investigated the in vitro efficacy of the antimicrobials diminazene aceturate (DA), chloramphenicol (CHL), and streptomycin (STP) alone and in combination against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus clinical isolates. DA was capable of inhibiting all strains with MIC of 25-400 µg mL-1, while STP and CHL showed antibacterial activity with minimum inhibitory concentration (MICs) of ≤3.12-400 µg mL-1. The combination of aceturate with STP showed synergism toward almost all Gram-negative bacteria, with fractional inhibitory concentration index (FICIs) of 0.09-0.37. In addition, for CHL and aceturate, synergisms for Gram-negative and -positive strains were observed. A time-kill assay against E. coli revealed that the aceturate and STP combination can inhibit bacterial growth in a shorter time when compared with single antibiotics. In addition, antimicrobials did not show hemolytic activity even at the highest concentrations used. Therefore, the antimicrobial combinations presented in this work showed important results, demonstrating that combined therapy can be used as an alternative strategy for pathogen control.


Asunto(s)
Antiinfecciosos , Cloranfenicol , Cloranfenicol/farmacología , Estreptomicina/farmacología , Escherichia coli , Antibacterianos/farmacología , Bacterias , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Trends Pharmacol Sci ; 43(4): 335-348, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35078644

RESUMEN

Increasing levels of resistance to conventional antibiotics have led to a search for new therapeutic options against bacterial infections. Klebsiella pneumoniae is considered a world health problem due to high levels of mortality associated with resistance to multiple antibiotics. Antimicrobial peptides (AMPs) have showed activity against this bacterium, which makes them a promising alternative in tackling resistance. In this article, we carried out an overview of the recent development of AMPs against K. pneumoniae using different designs and acting by different mechanisms, such as a recently proposed one against capsulated strains. Moreover, we outline AMPs' therapeutic potential when tested in combination with conventional antibiotics and against biofilms. Furthermore, challenges and perspectives for applying AMPs in clinical practice are discussed here.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana
4.
Plant Physiol Biochem ; 167: 385-389, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34404009

RESUMEN

Lippia alba (Mill.) N.E. Brown (Verbenaceae), popularly known as "lemon balm" or "bushy matgrass", is widely used in folk medicine due to its anti-inflammatory, antispasmodic, analgesic, and digestive properties. It was described as an autopolyploid complex with five cytotypes (2n = 30, 38, 45, 60 and 90). To enhance our understanding of the biological variation of the species, we investigated, comparatively, the proteomic profile of all ploidal levels (diploid, aneuploid, triploid, tetraploid, and hexaploid). Leaf proteins were extracted with subsequent separation by two-dimensional electrophoresis, spot analysis, and protein identification by mass spectrometry. By comparing the proteomic profile of diploid accession to the profile of the other ploidal levels we identified differential expression between the analysed spots. We identified 34 proteins with differential expression between the ploidal levels in comparison with the diploid. The identified proteins seem to play relevant roles in the primary metabolism of L. alba suggesting that a specific set of proteins was selected during the polyploidization process, being the triploid the most different one. Given that protein composition can substantially affect the desired therapeutic effect, we posit that further combination of proteomic and metabolomic studies may help to unravel genetic variations and phenotypic profiles in L. alba.


Asunto(s)
Lippia , Diploidia , Poliploidía , Proteínas , Proteómica
5.
J Exp Bot ; 69(21): 4997-5011, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30099553

RESUMEN

Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Inmunidad de la Planta/genética , Antibiosis/inmunología , Péptidos Catiónicos Antimicrobianos/genética , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Patógeno/inmunología
6.
Stem Cells Int ; 2015: 487467, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25763072

RESUMEN

The satellite cells are long regarded as heterogeneous cell population, which is intimately linked to the processes of muscular recovery. The heterogeneous cell population may be classified by specific markers. In spite of the significant amount of variation amongst the satellite cell populations, it seems that their activity is tightly bound to the paired box 7 transcription factor expression, which is, therefore, used as a canonical marker for these cells. Muscular dystrophic diseases, such as Duchenne muscular dystrophy, elicit severe tissue injuries leading those patients to display a very specific pattern of muscular recovery abnormalities. There have been works on the application of precursors cells as a therapeutic alternative for Duchenne muscular dystrophy and initial attempts have proven the cells inefficient; however later endeavours have proposed solutions for the experiments improving significantly the results. The presence of a range of satellite cells populations indicates the existence of specific cells with enhanced capability of muscular recovery in afflicted muscles.

7.
J Immunol Res ; 2015: 931574, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25759850

RESUMEN

Many immune-based intestinal disorders, such as ulcerative colitis and Crohn's disease, as well as other illnesses, may have the intestines as an initial cause or aggravator in the development of diseases, even apparently not correlating directly to the intestine. Diabetes, obesity, multiple sclerosis, depression, and anxiety are examples of other illnesses discussed in the literature. In parallel, importance of the gut microbiota in intestinal homeostasis and immunologic conflict between tolerance towards commensal microorganisms and combat of pathogens is well known. Recent researches show that the immune system, when altered by the gut microbiota, influences the state in which these diseases are presented in the patient directly and indirectly. At the present moment, a considerable number of investigations about this subject have been performed and published. However, due to difficulties on correlating information, several speculations and hypotheses are generated. Thus, the present review aims at bringing together how these interactions work-gut microbiota, immune system, and their influence in the neuroimmune system.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Sistema Inmunológico , Sistema Nervioso , Neuroinmunomodulación , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Modelos Animales de Enfermedad , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Homeostasis/fisiología , Humanos , Transducción de Señal
8.
World J Stem Cells ; 7(1): 106-15, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25621110

RESUMEN

Despite the advances in the hematology field, blood transfusion-related iatrogenesis is still a major issue to be considered during such procedures due to blood antigenic incompatibility. This places pluripotent stem cells as a possible ally in the production of more suitable blood products. The present review article aims to provide a comprehensive summary of the state-of-the-art concerning the differentiation of both embryonic stem cells and induced pluripotent stem cells to hematopoietic cell lines. Here, we review the most recently published protocols to achieve the production of blood cells for future application in hemotherapy, cancer therapy and basic research.

9.
Childs Nerv Syst ; 31(1): 7-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25480698

RESUMEN

PURPOSE: This study aims to propose the dental pulp stem cells (DPSCs) as a model for studying two features related to neurofibromatosis type 1 (NF1), i.e. augmented proliferative capacity and altered osteogenic differentiation. METHODS: We isolated a DPSC from the pulp of deciduous teeth of a 6-year-old NF1 patient and two other healthy children of similar age. Cell proliferation was assayed by counting with a haemocytometer after successive cell re-plating. In order to compare osteogenic differentiation, we used osteoblast-differentiating medium and quantified alizarin stain, which relates to degree of calcification, and evaluated the expression of osteoblastic markers by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The DPSCs isolated from the NF1 patient displayed a greater rate of proliferation when compared to the control cells. Osteogenic differentiation occurred as expected for both NF1 and control, which concerned cell morphology and expression of osteoblast marker genes ALP, BMP2, BMP4, OCN and SPP1. However, alizarin staining denoted a markedly lower calcification level in the cells from the NF1-diagnosed child, considering that less calcium deposits were visualized under light microscopy and a smaller amount of alizarin could be quantified by spectrophotometry after extraction from the stained cells. CONCLUSION: DPSCs seem to be useful as a model for studying NF1 and predicting prognosis of patients, since their in vitro behaviour seems to mimic at least two features of this disorder: higher tendency to develop bone abnormalities and neoplastic cell proliferation.


Asunto(s)
Diferenciación Celular/fisiología , Pulpa Dental/patología , Neurofibromatosis 1/patología , Osteogénesis/fisiología , Células Madre/fisiología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Quimiocina CCL27/genética , Quimiocina CCL27/metabolismo , Niño , Humanos , Masculino , Modelos Biológicos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , ARN Mensajero/metabolismo , Factores de Tiempo
11.
J Biomed Biotechnol ; 2012: 758102, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226945

RESUMEN

Stem cells, both embryonic and adult, due to the potential for application in tissue regeneration have been the target of interest to the world scientific community. In fact, stem cells can be considered revolutionary in the field of medicine, especially in the treatment of a wide range of human diseases. However, caution is needed in the clinical application of such cells and this is an issue that demands more studies. This paper will discuss some controversial issues of importance for achieving cell therapy safety and success. Particularly, the following aspects of stem cell biology will be presented: methods for stem cells culture, teratogenic or tumorigenic potential, cellular dose, proliferation, senescence, karyotyping, and immunosuppressive activity.


Asunto(s)
Medicina de Precisión/métodos , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/métodos , Células Madre/citología , Animales , Técnicas de Cultivo de Célula , Transformación Celular Neoplásica/patología , Humanos , Células Madre/inmunología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...