Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 267: 116163, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38290351

RESUMEN

The World Health Organization (WHO) estimated that there were 247 million malaria cases in 2021 worldwide, representing an increase in 2 million cases compared to 2020. The urgent need for the development of new antimalarials is underscored by specific criteria, including the requirement of new modes of action that avoid cross-drug resistance, the ability to provide single-dose cures, and efficacy against both assexual and sexual blood stages. Motivated by the promising results obtained from our research group with [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine derivatives, we selected these molecular scaffolds as the foundation for designing two new series of piperaquine analogs as potential antimalarial candidates. The initial series of hybrids was designed by substituting one quinolinic ring of piperaquine with the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine nucleus. To connect the heterocyclic systems, spacers with 3, 4, or 7 methylene carbons were introduced at the 4 position of the quinoline. In the second series, we used piperazine as a spacer to link the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine group to the quinoline core, effectively merging both pharmacophoric groups via a rigid spacer. Our research efforts yielded promising compounds characterized by low cytotoxicity and selectivity indices exceeding 1570. These compounds displayed potent in vitro inhibitory activity in the low nanomolar range against the erythrocytic form of the parasite, encompassing both susceptible and resistant strains. Notably, these compounds did not show cross-resistance with either chloroquine or established P. falciparum inhibitors. Even though they share a pyrazolo- or triazolo-pyrimidine core, enzymatic inhibition assays revealed that these compounds had minimal inhibitory effects on PfDHODH, indicating a distinct mode of action unrelated to targeting this enzyme. We further assessed the compounds' potential to interfere with gametocyte and ookinete infectivity using mature P. falciparum gametocytes cultured in vitro. Four compounds demonstrated significant gametocyte inhibition ranging from 58 % to 86 %, suggesting potential transmission blocking activity. Finally, we evaluated the druggability of these new compounds using in silico methods, and the results indicated that these analogs had favorable physicochemical and ADME (absorption, distribution, metabolism, and excretion) properties. In summary, our research has successfully identified and characterized new piperaquine analogs based on [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine scaffolds and has demonstrated their potential as promising candidates for the development of antimalarial drugs with distinct mechanisms of action, considerable selectivity, and P. falciparum transmission blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Piperazinas , Quinolinas , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum , Quinolinas/química , Malaria Falciparum/tratamiento farmacológico , Pirimidinas/química
2.
Drug Dev Res ; 83(2): 264-284, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32045013

RESUMEN

Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles spp. mosquitos. Due to the emerging resistance to currently available drugs, great efforts must be invested in discovering new molecular targets and drugs. N-myristoyltransferase (NMT) is an essential enzyme to parasites and has been validated as a chemically tractable target for the discovery of new drug candidates against malaria. In this work, 2D and 3D quantitative structure-activity relationship (QSAR) studies were conducted on a series of benzothiophene derivatives as P. falciparum NMT (PfNMT) and human NMT (HsNMT) inhibitors to shed light on the molecular requirements for inhibitor affinity and selectivity. A combination of Quantitative Structure-activity Relationship (QSAR) methods, including the hologram quantitative structure-activity relationship (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity index analysis (CoMSIA) models, were used, and the impacts of the molecular alignment strategies (maximum common substructure and flexible ligand alignment) and atomic partial charge methods (Gasteiger-Hückel, MMFF94, AM1-BCC, CHELPG, and Mulliken) on the quality and reliability of the models were assessed. The best models exhibited internal consistency and could reasonably predict the inhibitory activity against both PfNMT (HQSAR: q2 /r2 /r2pred = 0.83/0.98/0.81; CoMFA: q2 /r2 /r2pred = 0.78/0.97/0.86; CoMSIA: q2 /r2 /r2pred = 0.74/0.95/0.82) and HsNMT (HQSAR: q2 /r2 /r2pred = 0.79/0.93/0.74; CoMFA: q2 /r2 /r2pred = 0.82/0.98/0.60; CoMSIA: q2 /r2 /r2pred = 0.62/0.95/0.56). The results enabled the identification of the polar interactions (electrostatic and hydrogen-bonding properties) as the major molecular features that affected the inhibitory activity and selectivity. These findings should be useful for the design of PfNMT inhibitors with high affinities and selectivities as antimalarial lead candidates.


Asunto(s)
Plasmodium falciparum , Relación Estructura-Actividad Cuantitativa , Aciltransferasas , Humanos , Reproducibilidad de los Resultados , Tiofenos
3.
J Nat Prod ; 81(1): 188-202, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29297684

RESUMEN

The isolation and identification of a series of new pseudoceratidine (1) derivatives from the sponge Tedania brasiliensis enabled the evaluation of their antiparasitic activity against Plasmodium falciparum, Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) infantum, and Trypanosoma cruzi, the causative agents of malaria, cutaneous leishmaniasis, visceral leishmaniasis, and Chagas disease, respectively. The new 3-debromopseudoceratidine (4), 20-debromopseudoceratidine (5), 4-bromopseudoceratidine (6), 19-bromopseudoceratidine (7), and 4,19-dibromopseudoceratidine (8) are reported. New tedamides A-D (9-12), with an unprecedented 4-bromo-4-methoxy-5-oxo-4,5-dihydro-1H-pyrrole-2-carboxamide moiety, are also described. Compounds 4 and 5, 6 and 7, 9 and 10, and 11 and 12 have been isolated as pairs of inseparable structural isomers differing in their sites of bromination or oxidation. Tedamides 9+10 and 11+12 were obtained as optically active pairs, indicating an enzymatic formation rather than an artifactual origin. N12-Acetylpseudoceratidine (2) and N12-formylpseudoceratidine (3) were obtained by derivatization of pseudoceratidine (1). The antiparasitic activity of pseudoceratidine (1) led us to synthesize 23 derivatives (16, 17, 20, 21, 23, 25, 27-29, 31, 33, 35, 38, 39, 42, 43, 46, 47, 50, and 51) with variations in the polyamine chain and aromatic moiety in sufficient amounts for biological evaluation in antiparasitic assays. The measured antimalarial activity of pseudoceratidine (1) and derivatives 4, 5, 16, 23, 25, 31, and 50 provided an initial SAR evaluation of these compounds as potential leads for antiparasitics against Leishmania amastigotes and against P. falciparum. The results obtained indicate that pseudoceratidine represents a promising scaffold for the development of new antimalarial drugs.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antiparasitarios/química , Antiparasitarios/farmacología , Poríferos/química , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antiprotozoarios/química , Antiprotozoarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...