Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932137

RESUMEN

Proteases represent common targets in combating infectious diseases, including COVID-19. The 3-chymotrypsin-like protease (3CLpro) is a validated molecular target for COVID-19, and it is key for developing potent and selective inhibitors for inhibiting viral replication of SARS-CoV-2. In this review, we discuss structural relationships and diverse subsites of 3CLpro, shedding light on the pivotal role of dimerization and active site architecture in substrate recognition and catalysis. Our analysis of bioinformatics and other published studies motivated us to investigate a novel catalytic mechanism for the SARS-CoV-2 polyprotein cleavage by 3CLpro, centering on the triad mechanism involving His41-Cys145-Asp187 and its indispensable role in viral replication. Our hypothesis is that Asp187 may participate in modulating the pKa of the His41, in which catalytic histidine may act as an acid and/or a base in the catalytic mechanism. Recognizing Asp187 as a crucial component in the catalytic process underscores its significance as a fundamental pharmacophoric element in drug design. Next, we provide an overview of both covalent and non-covalent inhibitors, elucidating advancements in drug development observed in preclinical and clinical trials. By highlighting various chemical classes and their pharmacokinetic profiles, our review aims to guide future research directions toward the development of highly selective inhibitors, underscore the significance of 3CLpro as a validated therapeutic target, and propel the progression of drug candidates through preclinical and clinical phases.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/química , Dominio Catalítico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , COVID-19/virología , Ensayos Clínicos como Asunto , Replicación Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos
2.
Biochemistry ; 63(9): 1178-1193, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38669355

RESUMEN

Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/ß-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.


Asunto(s)
Esterasas , Simulación de Dinámica Molecular , Esterasas/química , Esterasas/metabolismo , Esterasas/genética , Especificidad por Sustrato , Dominio Catalítico , Cristalografía por Rayos X , Conformación Proteica , Hidrólisis , Cinética , Modelos Moleculares
3.
J Comput Aided Mol Des ; 37(12): 585-606, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792106

RESUMEN

Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , Enlace de Hidrógeno , Modelos Lineales , Mutación
4.
J Biomol Struct Dyn ; 41(19): 9326-9343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36345794

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron is currently the most prevalent SARS-CoV-2 variant worldwide. Herein, we calculated molecular dynamics simulations of the trimeric spikeWT and SpikeBA.1 for 300 ns. Our results show that SpikeBA.1 has more conformational flexibility than SpikeWT. Our principal component analysis (PCA) allowed us to observe a broader spectrum of different conformations for SpikeBA.1, mainly at N-terminal domain (NTD) and receptor-binding domain (RBD). Such increased flexibility could contribute to decreased neutralizing antibody recognition of this variant. Our molecular dynamics data show that the RBDBA.1 easily visits an up-conformational state and the prevalent D614G mutation is pivotal to explain molecular dynamics results for this variant because to lost hydrogen bonding interactions between the residue pairs K854SC/D614SC, Y837MC/D614MC, K835SC/D614SC, T859SC/D614SC. In addition, SpikeBA.1 residues near the furin cleavage site are more flexible than in SpikeWT, probably due to P681H and D614G substitutions. Finally, dynamical cross-correlation matrix (DCCM) analysis reveals that D614G and P681H may allosterically affect the cleavage site S1/S2. Conversely, S2' site may be influenced by residues located between NTD and RBD of a neighboring protomer of the SpikeWT. Such communication may be lost in SpikeBA.1, explaining the changes of the cell tropism in the viral infection. In addition, the movements of the NTDWT and NTDBA.1 may modulate the RBD conformation through allosteric effects. Taken together, our results explain how the structural aspects may explain the observed gains in infectivity, immune system evasion and transmissibility of the Omicron variant.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Simulación de Dinámica Molecular , Sistema Inmunológico , Mutación
5.
Elife ; 112022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36226828

RESUMEN

The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo VI , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Antibacterianos/farmacología , Islas Genómicas , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleasas/metabolismo
6.
ACS Omega ; 7(35): 30700-30709, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068861

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.

7.
Viruses ; 14(4)2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35458557

RESUMEN

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) are constantly threatening global public health. With no end date, the pandemic persists with the emergence of novel variants that threaten the effectiveness of diagnostic tests and vaccines. Mutations in the Spike surface protein of the virus are regularly observed in the new variants, potentializing the emergence of novel viruses with different tropism from the current ones, which may change the severity and symptoms of the disease. Growing evidence has shown that mutations are being selected in favor of variants that are more capable of evading the action of neutralizing antibodies. In this context, the most important factor guiding the evolution of SARS-CoV-2 is its interaction with the host's immune system. Thus, as current vaccines cannot block the transmission of the virus, measures complementary to vaccination, such as the use of masks, hand hygiene, and keeping environments ventilated remain essential to delay the emergence of new variants. Importantly, in addition to the involvement of the immune system in the evolution of the virus, we highlight several chemical parameters that influence the molecular interactions between viruses and host cells during invasion and are also critical tools making novel variants more transmissible. In this review, we dissect the impacts of the Spike mutations on biological parameters such as (1) the increase in Spike binding affinity to hACE2; (2) bound time for the receptor to be cleaved by the proteases; (3) how mutations associate with the increase in RBD up-conformation state in the Spike ectodomain; (4) expansion of uncleaved Spike protein in the virion particles; (5) increment in Spike concentration per virion particles; and (6) evasion of the immune system. These factors play key roles in the fast spreading of SARS-CoV-2 variants of concern, including the Omicron.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , COVID-19/virología , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
8.
J Biomol Struct Dyn ; 40(21): 11339-11356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34370631

RESUMEN

The current outbreak of COVID-19 is leading an unprecedented scientific effort focusing on targeting SARS-CoV-2 proteins critical for its viral replication. Herein, we performed high-throughput virtual screening of more than eleven thousand FDA-approved drugs using backpropagation-based artificial neural networks (q2LOO = 0.60, r2 = 0.80 and r2pred = 0.91), partial-least-square (PLS) regression (q2LOO = 0.83, r2 = 0.62 and r2pred = 0.70) and sequential minimal optimization (SMO) regression (q2LOO = 0.70, r2 = 0.80 and r2pred = 0.89). We simulated the stability of Acarbose-derived hexasaccharide, Naratriptan, Peramivir, Dihydrostreptomycin, Enviomycin, Rolitetracycline, Viomycin, Angiotensin II, Angiotensin 1-7, Angiotensinamide, Fenoterol, Zanamivir, Laninamivir and Laninamivir octanoate with 3CLpro by 100 ns and calculated binding free energy using molecular mechanics combined with Poisson-Boltzmann surface area (MM-PBSA). Our QSAR models and molecular dynamics data suggest that seven repurposed-drug candidates such as Acarbose-derived Hexasaccharide, Angiotensinamide, Dihydrostreptomycin, Enviomycin, Fenoterol, Naratriptan and Viomycin are potential SARS-CoV-2 main protease inhibitors. In addition, our QSAR models and molecular dynamics simulations revealed that His41, Asn142, Cys145, Glu166 and Gln189 are potential pharmacophoric centers for 3CLpro inhibitors. Glu166 is a potential pharmacophore for drug design and inhibitors that interact with this residue may be critical to avoid dimerization of 3CLpro. Our results will contribute to future investigations of novel chemical scaffolds and the discovery of novel hits in high-throughput screening as potential anti-SARS-CoV-2 properties.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antivirales , Reposicionamiento de Medicamentos , Inhibidores de Proteasas , SARS-CoV-2 , Acarbosa , Angiotensina Amida , Sulfato de Dihidroestreptomicina , Enviomicina , Fenoterol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología
9.
Microbiol Spectr ; 9(2): e0050921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34523996

RESUMEN

Liberibacter pathogens are the causative agents of several severe crop diseases worldwide, including citrus Huanglongbing and potato zebra chip. These bacteria are endophytic and nonculturable, which makes experimental approaches challenging and highlights the need for bioinformatic analysis in advancing our understanding about Liberibacter pathogenesis. Here, we performed an in-depth comparative phylogenomic analysis of the Liberibacter pathogens and their free-living, nonpathogenic, ancestral species, aiming to identify major genomic changes and determinants associated with their evolutionary transitions in living habitats and pathogenicity. Using gene neighborhood analysis and phylogenetic classification, we systematically uncovered, annotated, and classified all prophage loci into four types, including one previously unrecognized group. We showed that these prophages originated through independent gene transfers at different evolutionary stages of Liberibacter and only the SC-type prophage was associated with the emergence of the pathogens. Using ortholog clustering, we vigorously identified two additional sets of genomic genes, which were either lost or gained in the ancestor of the pathogens. Consistent with the habitat change, the lost genes were enriched for biosynthesis of cellular building blocks. Importantly, among the gained genes, we uncovered several previously unrecognized toxins, including new toxins homologous to the EspG/VirA effectors, a YdjM phospholipase toxin, and a secreted endonuclease/exonuclease/phosphatase (EEP) protein. Our results substantially extend the knowledge of the evolutionary events and potential determinants leading to the emergence of endophytic, pathogenic Liberibacter species, which will facilitate the design of functional experiments and the development of new methods for detection and blockage of these pathogens. IMPORTANCELiberibacter pathogens are associated with several severe crop diseases, including citrus Huanglongbing, the most destructive disease to the citrus industry. Currently, no effective cure or treatments are available, and no resistant citrus variety has been found. The fact that these obligate endophytic pathogens are not culturable has made it extremely challenging to experimentally uncover the genes/proteins important to Liberibacter pathogenesis. Further, earlier bioinformatics studies failed to identify key genomic determinants, such as toxins and effector proteins, that underlie the pathogenicity of the bacteria. In this study, an in-depth comparative genomic analysis of Liberibacter pathogens along with their ancestral nonpathogenic species identified the prophage loci and several novel toxins that are evolutionarily associated with the emergence of the pathogens. These results shed new light on the disease mechanism of Liberibacter pathogens and will facilitate the development of new detection and blockage methods targeting the toxins.


Asunto(s)
Toxinas Bacterianas/genética , Endófitos/clasificación , Endófitos/genética , Liberibacter/genética , Filogenia , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Citrus/microbiología , Endófitos/fisiología , Evolución Molecular , Genoma Bacteriano , Genómica , Liberibacter/química , Liberibacter/clasificación , Liberibacter/fisiología , Enfermedades de las Plantas/microbiología
10.
J Phys Chem Lett ; 11(24): 10446-10453, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33269932

RESUMEN

The SARS-CoV-2 pandemic has already killed more than one million people worldwide. To gain entry, the virus uses its Spike protein to bind to host hACE-2 receptors on the host cell surface and mediate fusion between viral and cell membranes. As initial steps leading to virus entry involve significant changes in protein conformation as well as in the electrostatic environment in the vicinity of the Spike/hACE-2 complex, we explored the sensitivity of the interaction to changes in ionic strength through computational simulations and surface plasmon resonance. We identified two regions in the receptor-binding domain (RBD), E1 and E2, which interact differently with hACE-2. At high salt concentration, E2-mediated interactions are weakened but are compensated by strengthening E1-mediated hydrophobic interactions. These results provide a detailed molecular understanding of Spike RBD/hACE-2 complex formation and stability under a wide range of ionic strengths.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Concentración Osmolar , Unión Proteica , Conformación Proteica , Dominios Proteicos
11.
Front Microbiol ; 11: 1535, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719671

RESUMEN

Candida haemulonii is a complex formed by C. haemulonii sensu stricto, C. haemulonii var. vulnera, and C. duobushaemulonii. Members of this complex are opportunistic pathogens closely related to C. pseudohaemulonii, C. lusitaniae, and C. auris, all members of a multidrug-resistant clade. Complete genome sequences for all members of this group are available in the GenBank database, except for C. haemulonii var. vulnera. Here, we report the first draft genomes of two C. haemulonii var. vulnera (isolates K1 and K2) and comparative genome analysis of closely related fungal species. The isolates were biofilm producers and non-susceptible to amphotericin B and fluconazole. The draft genomes comprised 350 and 387 contigs and total genome sizes of 13.21 and 13.26 Mb, with 5,479 and 5,507 protein-coding genes, respectively, allowing the identification of virulence and resistance genes. Comparative analyses of orthologous genes within the multidrug-resistant clade showed a total of 4,015 core clusters, supporting the conservation of 24,654 proteins and 3,849 single-copy gene clusters. Candida haemulonii var. vulnera shared a larger number of clusters with C. haemulonii and C. auris; however, more singletons were identified in C. lusitaniae and C. auris. Additionally, a multiple sequence alignment of Erg11p proteins revealed variants likely involved in reduced susceptibility to azole and polyene antifungal agents. The data presented in this work will, therefore, be of utmost importance for researchers studying the biology of the C. haemulonii complex and related species.

12.
Gigascience ; 8(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782791

RESUMEN

BACKGROUND: Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10-13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. RESULTS: Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2-6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ∼3.8-4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. CONCLUSIONS: This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.


Asunto(s)
Mapeo Contig/métodos , Glucosiltransferasas/genética , Fenilanina Amoníaco-Liasa/genética , Saccharum/crecimiento & desarrollo , Biomasa , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Variación Genética , Tamaño del Genoma , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/genética , Poliploidía , Regiones Promotoras Genéticas , Saccharum/genética
13.
Front Microbiol ; 10: 1669, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396186

RESUMEN

Multidrug-resistant (MDR) Klebsiella pneumoniae (Kp) is a major bacterial pathogen responsible for hospital outbreaks worldwide, mainly via the spread of high-risk clones and epidemic resistance plasmids. In this study, we evaluated the molecular epidemiology and ß-lactam resistance mechanisms of MDR-Kp strains isolated in a Brazilian academic care hospital. We used whole-genome sequencing to study drug resistance mechanisms and their relationships with a K. pneumoniae carbapenemase-producing (KPC) Kp outbreak. Forty-three Kp strains were collected between 2003 and 2012. Antimicrobial susceptibility testing was performed for 15 antimicrobial agents, and polymerase chain reaction (PCR) was used to detect 32 resistance genes. Mutations in ompk35, ompk36, and ompk37 were evaluated by PCR and DNA sequencing. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were carried out to differentiate the strains. Based on distinct epidemiological periods, six Kp strains were subjected to whole-genome sequencing. ß-lactamase coding genes were widely distributed among isolates. Almost all isolates had mutations in porin genes, particularly ompk35. The presence of bla KPC promoted a very high increase in carbapenem minimum inhibitory concentration only when ompk35 and ompk36 were interrupted by insertion sequences. A major cluster was identified by PFGE analysis and all isolates from this cluster belonged to clonal group (CG) 258. We have also identified a large repertoire of resistance genes in the sequenced isolates. A bla KPC-2-bearing plasmid (pUFPRA2) was also identified, which was very similar to a plasmid previously described in the first Brazilian KPC-Kp (2005). We found high-risk clones (CG258) and an epidemic resistance plasmid throughout the duration of the study (2003 to 2012), emphasizing a persistent presence of MDR-Kp strains in the hospital setting. Finally, we found that horizontal transfer of resistance genes between clones may have played a key role in the evolution of the outbreak.

14.
J Mol Biol ; 429(15): 2337-2352, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28601495

RESUMEN

Leptospira interrogans serovar Copenhageni is a human pathogen that causes leptospirosis, a worldwide zoonosis. The L. interrogans genome codes for a wide array of potential diguanylate cyclase (DGC) enzymes with characteristic GGDEF domains capable of synthesizing the cyclic dinucleotide c-di-GMP, known to regulate transitions between different cellular behavioral states in bacteria. Among such enzymes, LIC13137 (Lcd1), which has an N-terminal cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA (GAF) domain and a C-terminal GGDEF domain, is notable for having close orthologs present only in pathogenic Leptospira species. Although the function and structure of GGDEF and GAF domains have been studied extensively separately, little is known about enzymes with the GAF-GGDEF architecture. In this report, we address the question of how the GAF domain regulates the DGC activity of Lcd1. The full-length Lcd1 and its GAF domain form dimers in solution. The GAF domain binds specifically cAMP (KD of 0.24µM) and has an important role in the regulation of the DGC activity of the GGDEF domain. Lcd1 DGC activity is negligible in the absence of cAMP and is significantly enhanced in its presence (specific activity of 0.13s-1). The crystal structure of the Lcd1 GAF domain in complex with cAMP provides valuable insights toward explaining its specificity for cAMP and pointing to possible mechanisms by which this cyclic nucleotide regulates the assembly of an active DGC enzyme.


Asunto(s)
AMP Cíclico/química , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Leptospira interrogans/enzimología , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
15.
Curr Genet ; 62(2): 443-53, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26643654

RESUMEN

The complete plastome sequencing is an efficient option for increasing phylogenetic resolution and evolutionary studies, as well as may greatly facilitate the use of plastid DNA markers in plant population genetic studies. Merostachys and Guadua stand out as the most common and the highest potential utilization bamboos indigenous of Brazil. Here, we sequenced the complete plastome sequences of the Brazilian Guadua chacoensis and Merostachys sp. to perform full plastome phylogeny and characterize the occurrence, type, and distribution of SRRs using 20 Bambuseae species. The determined plastome sequence of Merostachys sp. and G. chacoensis is 136,334 and 135,403 bp in size, respectively, with an identical gene content and typical quadripartite structure consisting of a pair of IRs separated by the LSC and SSC regions. The Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of Paleotropical and Neotropical Bamboos clades. The Neotropical bamboos segregated into three well-supported lineages, Chusqueinae, Guaduinae, and Arthrostylidiinae, with the last two forming a well-supported sister relationship. Paleotropical bamboos segregated into two well-supported lineages, Hickeliinae and Bambusinae + Melocanninae. We identified 141.8 cpSSR in Bambuseae plastomes and an inferior value (38.15) for plastome coding sequences. Among them, we identified 16 polymorphic SSR loci, with number of alleles varying from 3 to 10. These 16 polymorphic cpSSR loci in Bambuseae plastome can be assessed for the intraspecific level of polymorphism, leading to innovative highly sensitive phylogeographic and population genetics studies for this tribe.


Asunto(s)
Genoma de Plastidios , Filogenia , Plastidios/genética , Poaceae/genética , Sitios Genéticos , Análisis de Secuencia de ADN
16.
Mol Biosyst ; 8(6): 1661-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22399070

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Redes y Vías Metabólicas , NAD/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Bacterias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Genómica , Humanos , Modelos Biológicos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tanquirasas/química , Tanquirasas/genética , Tanquirasas/metabolismo
17.
Bioinformatics ; 24(21): 2423-6, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18723522

RESUMEN

We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Periplasmáticas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/análisis , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Periplasmáticas/análisis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...