Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Toxicol Appl Pharmacol ; 473: 116606, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336294

RESUMEN

The root cause of sickle cell disease (SCD) is the polymerization of sickle hemoglobin (HbS) leading to sickling of red blood cells (RBC). Earlier studies showed that in patients with SCD, high-dose nitrite inhibited sickling, an effect originally attributed to HbS oxidation to methemoglobin-S even though the anti-sickling effect did not correlate with methemoglobin-S levels. Here, we examined the effects of nitrite on HbS polymerization and on methemoglobin formation in a SCD mouse model. In vitro, at concentrations higher than physiologic (>1 µM), nitrite increased the delay time for polymerization of deoxygenated HbS independently of methemoglobin-S formation, which only occurred at much higher concentrations (>300 µM). In vitro, higher nitrite concentrations oxidized 100% of normal hemoglobin A (HbA), but only 70% of HbS. Dimethyl adipimidate, an anti-polymerization agent, increased the fraction of HbS oxidized by nitrite to 82%, suggesting that polymerized HbS partially contributed to the oxidation-resistant fraction of HbS. At low concentrations (10 µM-1 mM), nitrite did not increase the formation of reactive oxygen species but at high concentrations (10 mM) it decreased sickle RBC viability. In SCD mice, 4-week administration of nitrite yielded no significant changes in methemoglobin or nitrite levels in plasma and RBC, however, it further increased leukocytosis. Overall, these data suggest that nitrite at supra-physiologic concentrations has anti-polymerization properties in vitro and that leukocytosis is a potential nitrite toxicity in vivo. Therefore, to determine whether the anti-polymerization effect of nitrite observed in vitro underlies the decreases in sickling observed in patients with SCD, administration of higher nitrite doses is required.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Animales , Ratones , Metahemoglobina , Nitritos , Leucocitosis , Anemia de Células Falciformes/tratamiento farmacológico
2.
Nitric Oxide ; 94: 79-91, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689491

RESUMEN

The hypothesis of decreased nitric oxide (NO) bioavailability in sickle cell disease (SCD) proposes that multiple factors leading to decreased NO production and increased consumption contributes to vaso-occlusion, pulmonary hypertension, and pain. The anion nitrite is central to NO physiology as it is an end product of NO metabolism and serves as a reservoir for NO formation. However, there is little data on nitrite levels in SCD patients and its relationship to pain phenotype. We measured nitrite in SCD subjects and examined its relationship to SCD pain. In SCD subjects, median whole blood, red blood cell and plasma nitrite levels were higher than in controls, and were not associated with pain burden. Similarly, Townes and BERK homozygous SCD mice had elevated blood nitrite. Additionally, in red blood cells and plasma from SCD subjects and in blood and kidney from Townes homozygous mice, levels of cyclic guanosine monophosphate (cGMP) were higher compared to controls. In vitro, hemoglobin concentration, rather than sickle hemoglobin, was responsible for nitrite metabolism rate. In vivo, inhibition of NO synthases and xanthine oxidoreductase decreased nitrite levels in homozygotes but not in control mice. Long-term nitrite treatment in SCD mice further elevated blood nitrite and cGMP, worsened anemia, decreased platelets, and did not change pain response. These data suggest that SCD in humans and animals is associated with increased nitrite/NO availability, which is unrelated to pain phenotype. These findings might explain why multiple clinical trials aimed at increasing NO availability in SCD patients failed to improve pain outcomes.


Asunto(s)
Anemia de Células Falciformes/sangre , GMP Cíclico/sangre , Modelos Animales de Enfermedad , Hipertensión Pulmonar/sangre , Nitritos/sangre , Dolor/sangre , Adulto , Anemia de Células Falciformes/metabolismo , Animales , Disponibilidad Biológica , GMP Cíclico/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nitritos/metabolismo , Dolor/metabolismo , Adulto Joven
3.
Free Radic Biol Med ; 108: 533-541, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416347

RESUMEN

The biology of the inorganic anion nitrite is linked to nitric oxide (NO) as nitrite can be reduced to NO and mediate its biological activities. Thus, studies of nitrite biology require sensitive and selective chemical assays. The acetic and ascorbic acids method is selective for nitrite and measures it in biological matrices. However, one of the pitfalls of nitrite measurements is its ubiquitous presence in sample collection tubes. Here, we showed high levels of nitrite in collection tubes containing EDTA, sodium citrate or sodium heparin and smaller amounts in tubes containing lithium heparin or serum clot activator. We also showed the presence of nitrite in colloid and crystalloid solutions frequently administered to patients and found variable levels of nitrite in 5% albumin, 0.9% sodium chloride, lactated ringer's, and dextrose-plus-sodium chloride solutions. These levels of nitrite varied across lots and manufacturers of the same type of fluid. Because these fluids are administered intravenously to patients (including those in shock), sometimes in large volumes (liters), it is possible that infusions of these nitrite-containing fluids may have clinical implications. A protocol for blood collection free of nitrite contamination was developed and used to examine nitrite levels in whole blood, red blood cells, plasma and urine from normal volunteers. Nitrite measurements were reproducible, had minimal variability, and did not indicate sex-differences. These findings validated a method and protocol for selective nitrite assay in biological fluids free of nitrite contamination which can be applied for study of diseases where dysfunctional NO signaling has been implicated.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Transfusión Sanguínea , Soluciones Isotónicas/química , Óxido Nítrico/química , Nitritos/química , Embalaje de Productos , Administración Intravenosa , Citratos/química , Soluciones Cristaloides , Ácido Edético/química , Heparina/química , Humanos , Soluciones Isotónicas/uso terapéutico , Óxido Nítrico/metabolismo , Reproducibilidad de los Resultados , Lactato de Ringer , Sensibilidad y Especificidad , Cloruro de Sodio/química , Citrato de Sodio
4.
Neurobiol Dis ; 85: 60-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26462816

RESUMEN

Strokes are perhaps the most serious complications of sickle cell disease (SCD) and by the fifth decade occur in approximately 25% of patients. While most patients do not develop strokes, mounting evidence indicates that even without brain abnormalities on imaging studies, SCD patients can present profound neurocognitive dysfunction. We sought to evaluate the neurocognitive behavior profile of humanized SCD mice (Townes, BERK) and to identify hematologic and neuropathologic abnormalities associated with the behavioral alterations observed in these mice. Heterozygous and homozygous Townes mice displayed severe cognitive deficits shown by significant delays in spatial learning compared to controls. Homozygous Townes also had increased depression- and anxiety-like behaviors as well as reduced performance on voluntary wheel running compared to controls. Behavior deficits observed in Townes were also seen in BERKs. Interestingly, most deficits in homozygotes were observed in older mice and were associated with worsening anemia. Further, neuropathologic abnormalities including the presence of large bands of dark/pyknotic (shrunken) neurons in CA1 and CA3 fields of hippocampus and evidence of neuronal dropout in cerebellum were present in homozygotes but not control Townes. These observations suggest that cognitive and behavioral deficits in SCD mice mirror those described in SCD patients and that aging, anemia, and profound neuropathologic changes in hippocampus and cerebellum are possible biologic correlates of those deficits. These findings support using SCD mice for studies of cognitive deficits in SCD and point to vulnerable brain areas with susceptibility to neuronal injury in SCD and to mechanisms that potentially underlie those deficits.


Asunto(s)
Anemia de Células Falciformes/patología , Anemia de Células Falciformes/fisiopatología , Cerebelo/patología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Hipocampo/patología , Envejecimiento/patología , Envejecimiento/fisiología , Envejecimiento/psicología , Anemia de Células Falciformes/psicología , Animales , Cerebelo/fisiopatología , Trastornos del Conocimiento/etiología , Estudios de Cohortes , Estudios Transversales , Depresión/etiología , Depresión/patología , Depresión/fisiopatología , Femenino , Genotipo , Hipocampo/fisiopatología , Hierro/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/metabolismo , Neuronas/patología , Aprendizaje Inverso/fisiología , Caracteres Sexuales
5.
Nitric Oxide ; 45: 54-64, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25445633

RESUMEN

The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ≈ 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role.


Asunto(s)
Pruebas de Química Clínica/métodos , Histocitoquímica/métodos , Nitritos/análisis , Ácido Acético/química , Animales , Ácido Ascórbico/química , Pruebas de Química Clínica/normas , Femenino , Histocitoquímica/normas , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Especificidad de Órganos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Diabetes ; 56(6): 1655-61, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17329619

RESUMEN

Central obesity and the accumulation of visceral fat are risk factors for the development of type 2 diabetes and cardiovascular disease. Omentin is a protein expressed and secreted from visceral but not subcutaneous adipose tissue that increases insulin sensitivity in human adipocytes. To determine the impact of obesity-dependent insulin resistance on the regulation of two omentin isoforms, gene expression and plasma levels were measured in lean, overweight, and obese subjects. Omentin 1 was shown to be the major circulating isoform in human plasma. Lean subjects had significantly higher plasma omentin 1 levels than obese and overweight subjects. In addition, higher plasma omentin 1 levels were detected in women compared with men. Plasma omentin 1 levels were inversely correlated with BMI, waist circumference, leptin levels, and insulin resistance as measured by homeostasis model assessment and positively correlated with adiponectin and HDL levels. Both omentin 1 and omentin 2 gene expression were decreased with obesity and were highly correlated with each other in visceral adipose tissue. In summary, decreased omentin levels are associated with increasing obesity and insulin resistance. Therefore, omentin levels may be predictive of the metabolic consequences or co-morbidities associated with obesity.


Asunto(s)
Citocinas/sangre , Citocinas/genética , Regulación de la Expresión Génica , Lectinas/sangre , Lectinas/genética , Obesidad/sangre , Obesidad/genética , Adiponectina/sangre , Tejido Adiposo/metabolismo , Adulto , Citocinas/aislamiento & purificación , Femenino , Proteínas Ligadas a GPI , Humanos , Lectinas/aislamiento & purificación , Masculino , Persona de Mediana Edad , Selección de Paciente , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...