Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(18): 53938-53947, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869946

RESUMEN

Barium (Ba) is a non-essential element that can cause toxicity in living organisms and environmental contamination. Plants absorb barium predominantly in its divalent cationic form Ba2+. Sulfur (S) can decrease the availability of Ba2+ in the soil by causing its precipitation as barium sulfate, a compound known for its very low solubility. The objective of this study was to evaluate the effect of soil sulfate supply in soil Ba fractions, as well as on plant growth, and Ba and S uptake by lettuce plants grown in artificially Ba-contaminated soil under greenhouse conditions. The treatments consisted of five Ba doses (0, 150, 300, 450, and 600 mg kg-1 Ba, as barium chloride) combined with three S doses (0, 40, and 80 mg kg-1 S, as potassium sulfate). The treatments were applied to soil samples (2.5 kg) and placed in plastic pots for plant cultivation. The Ba fractions analyzed were extractable-Ba, organic matter-Ba, oxides associated-Ba, and residual-Ba. The results indicate that the extractable-Ba fraction was the main one responsible for Ba bioavailability and phytotoxicity, probably corresponding to the exchangeable Ba in the soil. The dose of 80 mg kg-1 of S reduced extractable-Ba by 30% at higher Ba doses while it increased the other fractions. Furthermore, S supply attenuated the growth inhibition in plants under Ba exposure. Thus, S supply protected the lettuce plants from Ba toxicity by reduction of Ba availability in soil and plant growth enhancement. The results suggest that sulfate supply is a suitable strategy for managing Ba-contaminated areas.


Asunto(s)
Lactuca , Contaminantes del Suelo , Bario , Lactuca/fisiología , Sulfato de Bario , Plantas , Suelo , Óxidos de Azufre , Contaminantes del Suelo/análisis , Disponibilidad Biológica
2.
Plant Physiol Biochem ; 194: 335-344, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36459868

RESUMEN

Zinc (Zn) and iron (Fe) are essential micronutrients for all living organisms and the major targets for crop biofortification. However, when acquired in excess quantities, Zn and Fe can be toxic to plants. In this study, we examined the interaction between Zn and Fe in soybean plants under various Zn and Fe treatments. While the level of Zn accumulation increased with increasing Zn supplies, Zn content greatly decreased with rising Fe supplies. Moreover, Zn uptake rates were negatively correlated with Fe supplies. However, Fe accumulation was not greatly affected by elevating Zn supplies. Excess Zn supplies were found to induce typical Fe deficiency symptoms under low Fe conditions, which can be counteracted by increasing Fe supplies. Interestingly, leaf chlorosis caused by excess Zn and low Fe supplies was not directly associated with reduced total Fe content but likely associated with deleterious effects of excess Zn. The combination of high Zn and low Fe greatly activates FRO2 and FIT1 gene expression in soybean roots. Besides, Zn-Fe interaction influences the activities of antioxidative enzymes as well as the uptake, accumulation, and homeostasis of other essential micronutrients, such as copper and manganese in soybean plants. These findings provide new perspectives on Zn and Fe interaction and on heavy metal-induced Fe deficiency-like symptoms.


Asunto(s)
Hierro , Metales Pesados , Hierro/metabolismo , Glycine max/metabolismo , Metales Pesados/metabolismo , Zinc/toxicidad , Zinc/metabolismo , Micronutrientes/metabolismo
3.
Ecotoxicol Environ Saf ; 208: 111643, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396163

RESUMEN

Sulfur (S) can play essential roles in protecting plants against abiotic stress, including heavy metal toxicity. However, the effect of this nutrient on plants exposed to barium (Ba) is still unknown. This study was designed to evaluate the S supply on oxidative stress and the antioxidant system of Tanzania guinea grass under exposure to Ba, grown in a nutrient solution under greenhouse conditions. It was studied the influence of S/Ba combinations in nutrient solution on oxidative stress indicators (hydrogen peroxide, malondialdehyde, and proline) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase). The treatments consisted in thirteen S/Ba combinations in the nutrient solution (0.1/0.0; 0.1/5.0; 0.1/20.0; 1.0/2.5; 1.0/10.0; 1.9/0.0 - control; 1.9/5.0; 1.9/20.0; 2.8/2.5; 2.8/10.0; 3.7/0.0; 3.7/5.0 and 3.7/20.0 mM of S and Ba, respectively). The plants were grown for two growth periods, which consisted of fourteen days of S supply and the eight days of Ba exposure each one. The severe S deficiency decreased the superoxide dismutase activity, regardless of Ba exposure in recently expanded leaves and culms plus sheaths. However, supplemental S supply (above 1.9 mM S, which corresponds to S supply adequate to plant growth) it improved the superoxide dismutase activity in these tissues under high Ba concentrations. Conversely, the severe S deficiency increased the activities of catalase, ascorbate peroxidase, and glutathione reductase in grass leaves slightly, without Ba exposure influence. It was observed that the supplemental S supply also induced the guaiacol peroxidase activity and proline production in culms plus sheaths under high Ba rates, showing values until 2.5 and 3.1 folds higher than the control treatment, respectively. In plants under exposure to 20.0 mM Ba, the supplemental S supply decreased the malondialdehyde content in culms plus sheaths in 17% compared to 1.9 mM S. These results indicate that supplemental S supply can mitigate Ba toxicity in Tanzania guinea grass, mainly by improving superoxide dismutase and guaiacol peroxidase activities, and proline metabolism.


Asunto(s)
Antioxidantes/metabolismo , Bario/toxicidad , Panicum/efectos de los fármacos , Prolina/metabolismo , Azufre/farmacología , Fertilizantes , Estrés Oxidativo/efectos de los fármacos , Panicum/crecimiento & desarrollo , Panicum/metabolismo , Peroxidasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA