Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 173(Pt 1): 113345, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803652

RESUMEN

Red propolis from northeast Brazil contains mainly isoflavonoids as bioactive compounds, and its consumption may counteract unregulated and exacerbated formation of reactive oxygen species and inflammatory cytokines/chemokines. Moreover, the production of particles using sustainable carriers have been studied to increase the use of propolis as a functional food ingredient. Hence, the objective of this work was to investigate the effects of simulated gastrointestinal digestion followed by a cell-based epithelial transport on phenolic profile, anti-inflammatory and antioxidant activities of particles of brewer's spent yeasts (BSY) loaded with ethanolic extract of Brazilian red propolis (EEP). As a result, the EEP phenolic diversity decreased throughout the simulated gastrointestinal system, and was modulated by the particle production, as detected by high-performance liquid chromatography - electrospray ionization - quadrupole-time-of-flight-mass spectrometry (HPLC-ESI-QTOF-MS). Concomitantly, the antioxidant activity, as assessed by the ability to scavenge peroxyl and superoxide radicals, hydrogen peroxide, and hypochlorous acid, generally decreased at a higher extent for the particles of EEP with BSY (EEP-BSY) throughout the experiments. Nonetheless, after epithelial transport through the Caco-2 cell monolayer, the basolateral fraction of both EEP-BSY and EEP decreased the activation of pro-inflammatory transcription factor NF-κB by 83% and 65%, respectively, as well as the release of TNF-α (up to 51% and 38%, respectively), and CXCL2/MIP-2 (up to 33% and 25%, respectively). Therefore, BSY may be an interesting carrier for EEP bioencapsulation, since it preserves its anti-inflammatory activity. Further studies should be encouraged to investigate the feasibility of adding it in formulations of functional foods, considering its effect on sensory attributes.


Asunto(s)
Própolis , Saccharomyces cerevisiae , Humanos , Própolis/farmacología , Própolis/química , Brasil , Células CACO-2 , Fenoles/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Digestión
2.
Food Chem ; 413: 135648, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791665

RESUMEN

Germination has been regarded as a promising natural process to improve the antioxidant properties of mustard. However, there ís one question to be solved in this area: does germination improve mustard phenolics' bioaccessibility? The aim of this study was to answer this question by using INFOGEST protocol to simulate in vitro digestion. Resveratrol, formononetin and cryptochlorogenic acid were identified for the first time as evaluated by liquid chromatography-mass spectrometry. In general, digestion positively impacted the antioxidant potential of soluble phenolics from non-germinated and germinated grains, which were probably released from cell wall matrix by digestive enzymes. Although digestion seemed to nullify the antioxidant improvement caused by germination, phenolic quantities were distinctive. The main difference was found for sinapic acid, as its concentration reached a value 1.75-fold higher in germinated digested mustard compared to non-germinated. The results obtained suggested that germination improved the phenolic bioaccessibility of mustard grains, which encourages its use and investigations.


Asunto(s)
Antioxidantes , Planta de la Mostaza , Antioxidantes/química , Semillas/química , Fenoles/análisis , Resveratrol/análisis , Germinación
3.
Food Res Int ; 162(Pt B): 112143, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461364

RESUMEN

Vitamin E comprises compounds consisting of a chromanol ring and an isoprenoid side-chain, and is an essential lipid-soluble nutrient with several physiological functions. Vitamin E intake has been reported as inadequate for some populations. Only a fraction of dietary vitamin E is effectively released from the food matrix (bioaccessible fraction), absorbed (enterocyte uptake/epithelial transport) and transported in lipoproteins to reach the target tissues (bioavailable fraction), depending on the food structure, composition, and processing. Therefore, research concerning the fate of vitamin E through the gastrointestinal tract is of paramount importance for developing healthy foods and guiding effective public policies. The combination of simulated in vitro gastrointestinal digestion followed by intestinal epithelial transport and/or enterocyte uptake assays using ex vivo cell models has been successfully used to mimic the physiological conditions and predict the bioaccessibility and epithelial transport of compounds. The objective of this review was to summarize the current knowledge and challenges for predicting the bioaccessibility and uptake/epithelial transport of vitamin E by in vitro and ex vivo assays. Here, we revisited the metabolism of vitamin E and introduced in vitro and ex vivo methods for estimating the bioaccessibility and intestinal absorption of vitamin E. This review compiles data on vitamin E bioaccessibility in vitro and uptake/epithelial transport ex vivo for different food matrices, and discusses the factors that can affect their measurement. Additionally, co-culture approaches using hepatic lineages to assess vitamin E bioavailability are further presented.


Asunto(s)
Bioensayo , Vitamina E , Transporte Biológico , Absorción Intestinal , Alimentos
4.
Foods ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613302

RESUMEN

The mechanical extraction of oils from Brazilian açaí (Euterpe oleracea Mart) produces significant amounts of a byproduct known as "meal", which is frequently discarded in the environment as waste material. Nevertheless, plant byproducts, especially those from oil extraction, may contain residual polyphenols in their composition and be a rich source of natural bioactive compounds. In this study, the phenolic composition and in vitro biological properties of a hydroethanolic açaí meal extract were elucidated. The major compounds tentatively identified in the extract by high-resolution mass spectrometry were anthocyanins, flavones, and flavonoids. Furthermore, rhamnocitrin is reported in an açaí byproduct for the first time. The extract showed reducing power and was effective in scavenging the ABTS radical cation (820.0 µmol Trolox equivalent∙g-1) and peroxyl radical (975.7 µmol Trolox equivalent∙g-1). NF-κB activation was inhibited at 10 or 100 µg∙mL-1 and TNF-α levels were reduced at 100 µg∙mL-1. However, the antibacterial effects against ESKAPE pathogens was not promising due to the high concentration needed (1250 or 2500 µg∙mL-1). These findings can be related to the diverse polyphenol-rich extract composition. To conclude, the polyphenol-rich extract obtained from açaí meal showed relevant biological activities that may have great applicability in the food and nutraceutical industries.

5.
Food Res Int ; 144: 110353, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34053546

RESUMEN

Agro-industrial activities generate large amounts of solid residues, which are generally discarded or used as animal feed. Interestingly, some of these by-products could serve as natural sources of bioactive compounds with great potential for industrial exploitation. This study aimed to optimize the extraction of phenolic antioxidants from the pulp residue (oil processing by-product) of inajá (Maximiliana maripa, a native species found in the Brazilian Amazon). The antioxidant properties of the optimized extract and its phenolic profile by high-resolution mass spectrometry (LC-ESI-QTOF-MS) were further determined. Central composite rotatable design and statistical analysis demonstrated that the temperature of 70 °C and 50% (v/v) ethanol concentration improved the extraction of phenolic compounds with antioxidant properties. The optimized extract also showed scavenging activity against the ABTS radical cation and reactive oxygen species (ROS; peroxyl and superoxide radical, and hypochlorous acid). Moreover, the optimized extract was able to reduce NF-κB activation and TNF-α release, which are modulated by ROS. Flavan-3-ols were the major phenolics present in the optimized extract. Collectively, our findings support the use of inajá cake as a new source of bioactive catechins and procyanidins. This innovative approach adds value to this agro-industrial by-product in the functional food, nutraceutical, pharmaceutical, and/or cosmetic industries and complies with the circular economy agenda.


Asunto(s)
Catequina , Proantocianidinas , Animales , Antioxidantes , Brasil , Frutas
6.
Antioxidants (Basel) ; 10(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669251

RESUMEN

Brazilian red propolis (BRP) is a natural product widely known for its phenolic composition and strong antioxidant properties. In this study, we used the Box-Behnken Design (BBD) with Surface Response Methodology to optimize the extraction conditions for total phenolic content (TPC) and Trolox equivalent antioxidant capacity(TEAC) of bioactive phenolics from BRP. The extraction time, ethanol/water concentration and temperature, were tested. All variables had significant effects (p ≤ 0.05), with a desirability coefficient of 0.88. Under optimized conditions (90% ethanol at 80 °C for 30 min), the BRP extract showed a TPC of 129.00 ± 2.16 mg GAE/g and a TEAC of 3471.76 ± 53.86 µmol TE/g. Moreover, FRAP and ORAC assays revealed that the optimized BRP extract had 1472.86 ± 72.37 µmol Fe2+/g and 4339.61 ± 114.65 µmol TE/gof dry weight, respectively. Thirty-two phenolic compounds were tentatively identified by LC-QTOF-ESI-MS/MS, of which thirteen were found for the first time in BRP, including four flavones, one flavanol, two flavanones, two chalcones, and four isoflavonoids. Thus, our results highlight the importance of BRP as a source of a wide variety of phenolic compounds with significant antioxidant properties.

7.
Molecules ; 26(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477281

RESUMEN

A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.


Asunto(s)
Antioxidantes/química , Inhibidores Enzimáticos/química , Flavonoides/química , Triticum/química , Animales , Humanos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...