Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Immunol ; 45(5): 327-328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664101

RESUMEN

Lawrence et al. report that fetal cortical boundaries are susceptible to morphogenetic stress that regulates a microglia state resembling postnatal, axon-tract associated microglia (ATM). This state performs a newfound function at these boundaries by preventing the formation of cavitary lesions, mediated in part by Spp1-regulated phagocytosis of fibronectin 1.


Asunto(s)
Microglía , Microglía/fisiología , Animales , Humanos , Fagocitosis , Corteza Cerebral/embriología , Corteza Cerebral/citología , Encéfalo/embriología , Encéfalo/fisiología , Fibronectinas/metabolismo
2.
Nat Neurosci ; 25(3): 306-316, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35260865

RESUMEN

A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.


Asunto(s)
Neuroglía , Transcriptoma , Encéfalo , Humanos , Microglía/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
3.
Nature ; 572(7767): 120-124, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341279

RESUMEN

Organogenesis involves integration of diverse cell types; dysregulation of cell-type-specific gene networks results in birth defects, which affect 5% of live births. Congenital heart defects are the most common malformations, and result from disruption of discrete subsets of cardiac progenitor cells1, but the transcriptional changes in individual progenitors that lead to organ-level defects remain unknown. Here we used single-cell RNA sequencing to interrogate early cardiac progenitor cells as they become specified during normal and abnormal cardiogenesis, revealing how dysregulation of specific cellular subpopulations has catastrophic consequences. A network-based computational method for single-cell RNA-sequencing analysis that predicts lineage-specifying transcription factors2,3 identified Hand2 as a specifier of outflow tract cells but not right ventricular cells, despite the failure of right ventricular formation in Hand2-null mice4. Temporal single-cell-transcriptome analysis of Hand2-null embryos revealed failure of outflow tract myocardium specification, whereas right ventricular myocardium was specified but failed to properly differentiate and migrate. Loss of Hand2 also led to dysregulation of retinoic acid signalling and disruption of anterior-posterior patterning of cardiac progenitors. This work reveals transcriptional determinants that specify fate and differentiation in individual cardiac progenitor cells, and exposes mechanisms of disrupted cardiac development at single-cell resolution, providing a framework for investigating congenital heart defects.


Asunto(s)
Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/patología , Corazón/embriología , Análisis de la Célula Individual , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Movimiento Celular , Análisis por Conglomerados , Femenino , Cardiopatías Congénitas/genética , Masculino , Ratones , Análisis de Secuencia de ARN , Tretinoina/metabolismo
4.
Science ; 364(6443): 865-870, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31147515

RESUMEN

Complex genetic mechanisms are thought to underlie many human diseases, yet experimental proof of this model has been elusive. Here, we show that a human cardiac anomaly can be caused by a combination of rare, inherited heterozygous mutations. Whole-exome sequencing of a nuclear family revealed that three offspring with childhood-onset cardiomyopathy had inherited three missense single-nucleotide variants in the MKL2, MYH7, and NKX2-5 genes. The MYH7 and MKL2 variants were inherited from the affected, asymptomatic father and the rare NKX2-5 variant (minor allele frequency, 0.0012) from the unaffected mother. We used CRISPR-Cas9 to generate mice encoding the orthologous variants and found that compound heterozygosity for all three variants recapitulated the human disease phenotype. Analysis of murine hearts and human induced pluripotent stem cell-derived cardiomyocytes provided histologic and molecular evidence for the NKX2-5 variant's contribution as a genetic modifier.


Asunto(s)
Cardiomiopatías/genética , Heterocigoto , Proteína Homeótica Nkx-2.5/genética , Herencia Multifactorial , Factor Nuclear Tiroideo 1/genética , Animales , Proteína 9 Asociada a CRISPR , Miosinas Cardíacas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Exoma , Frecuencia de los Genes , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Ratones Mutantes , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Herencia Paterna/genética , Factores de Transcripción/genética
5.
Elife ; 4: e09431, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26445246

RESUMEN

The in vivo roles for even the most intensely studied microRNAs remain poorly defined. Here, analysis of mouse models revealed that let-7, a large and ancient microRNA family, performs tumor suppressive roles at the expense of regeneration. Too little or too much let-7 resulted in compromised protection against cancer or tissue damage, respectively. Modest let-7 overexpression abrogated MYC-driven liver cancer by antagonizing multiple let-7 sensitive oncogenes. However, the same level of overexpression blocked liver regeneration, while let-7 deletion enhanced it, demonstrating that distinct let-7 levels can mediate desirable phenotypes. let-7 dependent regeneration phenotypes resulted from influences on the insulin-PI3K-mTOR pathway. We found that chronic high-dose let-7 overexpression caused liver damage and degeneration, paradoxically leading to tumorigenesis. These dose-dependent roles for let-7 in tissue repair and tumorigenesis rationalize the tight regulation of this microRNA in development, and have important implications for let-7 based therapeutics.


Asunto(s)
Regulación de la Expresión Génica , Genes Supresores de Tumor , MicroARNs/biosíntesis , Neoplasias/patología , Regeneración , Animales , Ratones
6.
Stem Cells ; 31(5): 1001-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23378032

RESUMEN

Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males, the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild-type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage.


Asunto(s)
Fertilidad/fisiología , Células Germinativas/fisiología , Proteínas de Unión al ARN/fisiología , Factores de Edad , Animales , Diferenciación Celular/fisiología , Femenino , Células Germinativas/citología , Masculino , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Espermatogénesis/fisiología , Testículo/citología , Testículo/fisiología
7.
BMC Biol ; 10: 40, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22559716

RESUMEN

UNLABELLED: The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. RESULTS: WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. CONCLUSIONS: Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.


Asunto(s)
Contaminación por Petróleo/efectos adversos , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Animales , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/embriología , Sistema Cardiovascular/crecimiento & desarrollo , Desastres , Embrión no Mamífero/anomalías , Embrión no Mamífero/embriología , Monitoreo del Ambiente , Golfo de México , Cabeza/anomalías , Cabeza/embriología , Cabeza/crecimiento & desarrollo , Modelos Animales , Actividad Motora , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Pez Cebra/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...