Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 211(11): 1725-1735, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843500

RESUMEN

Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.


Asunto(s)
Activación de Complemento , Inmunoglobulina G , Humanos , Glicosilación
2.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699657

RESUMEN

Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inflamación/tratamiento farmacológico , Inmunoglobulina G/farmacología
3.
Cell Rep Med ; 4(4): 101003, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37044090

RESUMEN

Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions. We describe a BG505 SOSIP trimer, termed GT1.2, to optimize binding to gl-CH31, the unmutated common precursor of the CH30-34 bNAb lineage that acquired a large CDRH1 insertion. The GT1.2 trimer activates gl-CH31 naive B cells in knock-in mice, and B cell responses could be matured by selected boosting immunogens to generate cross-reactive Ab responses. Next-generation B cell sequencing reveals selection for VRC01-class mutations, including insertions in CDRH1 and FWR3 at positions identical to VRC01-class bNAbs, as well as CDRL1 deletions and/or glycine substitutions to accommodate the N276 glycan. These results provide proof of concept for vaccine-induced affinity maturation of B cell lineages that require rare insertions and deletions.


Asunto(s)
Seropositividad para VIH , VIH-1 , Ratones , Animales , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , VIH-1/genética , Anticuerpos Anti-VIH , Vacunación
4.
J Allergy Clin Immunol ; 151(6): 1646-1654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36716825

RESUMEN

BACKGROUND: Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES: To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS: The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS: In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS: These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Miastenia Gravis , Humanos , Autoanticuerpos , Inmunoglobulina G , Autoantígenos
5.
J Immunol ; 210(2): 158-167, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36480251

RESUMEN

Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn). Although it is known that glycosylation of Abs can affect binding to Fc receptors, little is known on the impact of IgG Fab glycosylation on hFcRn binding and transplacental transport. Therefore, we analyzed the interaction between hFcRn and IgG with and without Fab glycans in vitro with various methods as well as in vivo by studying placental transfer of Fab-glycosylated Abs from mothers to newborns. No effect of Fab glycosylation on IgG binding to hFcRn was found by surface plasmon resonance and hFcRn affinity chromatography. In contrast, studies in a cell membrane context revealed that Fab glycans negatively impacted IgG-hFcRn interaction. In line with this, we found that Fab-glycosylated IgGs were transported ∼20% less efficiently across the placenta. This appeared to be a general phenomenon, observed for ACPAs, non-ACPAs, as well as total IgG in rheumatoid arthritis patients and healthy controls. Our results suggest that, in a cellular context, Fab glycans inhibit IgG-hFcRn interaction and thus negatively affect the transplacental transfer of IgG. As Fab-glycosylated Abs are frequently associated with autoimmune and malignant disorders and may be potentially harmful, this might encompass a regulatory mechanism, limiting the half-life and transport of such Abs.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Embarazo , Humanos , Femenino , Recién Nacido , Placenta , Receptores Fc/metabolismo , Inmunoglobulina G , Antígenos de Histocompatibilidad Clase I , Polisacáridos
7.
Cell Host Microbe ; 30(12): 1759-1772.e12, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36400021

RESUMEN

The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.


Asunto(s)
Fiebre de Lassa , Nanopartículas , Cobayas , Conejos , Animales , Virus Lassa/química , Anticuerpos Neutralizantes , Fiebre de Lassa/prevención & control , Glicoproteínas , Vacunas Sintéticas
8.
Nat Commun ; 13(1): 4539, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927266

RESUMEN

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Epítopos , Humanos , Isotipos de Inmunoglobulinas , Receptores de Antígenos de Linfocitos B , Glicoproteína de la Espiga del Coronavirus
9.
Front Immunol ; 13: 893648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651621

RESUMEN

The most effective treatment for HIV-1, antiretroviral therapy, suppresses viral replication and averts the disease from progression. Nonetheless, there is a need for alternative treatments as it requires daily administration with the possibility of side effects and occurrence of drug resistance. Broadly neutralizing antibodies or nanobodies targeting the HIV-1 envelope glycoprotein are explored as alternative treatment, since they mediate viral suppression and contribute to the elimination of virus-infected cells. Besides neutralization potency and breadth, Fc-mediated effector functions of bNAbs also contribute to the in vivo efficacy. In this study multivalent J3, 2E7 and 1F10 anti-HIV-1 broadly neutralizing nanobodies were generated to improve neutralization potency and IgG1 Fc fusion was utilized to gain Fc-mediated effector functions. Bivalent and trivalent nanobodies, coupled using long glycine-serine linkers, showed increased binding to the HIV-1 Env and enhanced neutralization potency compared to the monovalent variant. Fusion of an IgG1 Fc domain to J3 improved neutralization potency compared to the J3-bihead and restored Fc-mediated effector functions such as antibody-dependent cellular phagocytosis and trogocytosis, and natural killer cell activation. Due to their neutralization breadth and potency and their ability to induce effector functions these nanobody-IgG1 constructs may prove to be valuable towards alternative HIV-1 therapies.


Asunto(s)
Seropositividad para VIH , VIH-1 , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes/farmacología , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Humanos , Inmunoglobulina G , Anticuerpos de Dominio Único/farmacología
10.
J Immunol ; 209(1): 16-25, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35705253

RESUMEN

IgM is secreted as a pentameric polymer containing a peptide called the joining chain (J chain). However, integration of the J chain is not required for IgM assembly and in its absence IgM predominantly forms hexamers. The conformations of pentameric and hexameric IgM are remarkably similar with a hexagonal arrangement in solution. Despite these similarities, hexameric IgM has been reported to be a more potent complement activator than pentameric IgM, but reported relative potencies vary across different studies. Because of these discrepancies, we systematically investigated human IgM-mediated complement activation. We recombinantly generated pentameric and hexameric human IgM (IgM+J and IgM-J, respectively) mAbs and measured their ability to induce complement deposition and complement-dependent cytotoxicity when bound to several Ags at varying densities. At high Ag densities, hexameric and pentameric IgM activate complement to a similar extent as IgG1. However, at low densities, hexameric IgM outcompeted pentameric IgM and even more so IgG1. These differences became progressively more pronounced as antigenic density became critically low. Our findings highlight that the differential potency of hexameric and pentameric IgM for complement activation is profoundly dependent on the nature of its interactions with Ag. Furthermore, it underscores the importance of IgM in immunity because it is a more potent complement activator than IgG1 at low Ag densities.


Asunto(s)
Inmunoglobulina G , Cadenas J de Inmunoglobulina , Activación de Complemento , Proteínas del Sistema Complemento , Humanos , Cadenas J de Inmunoglobulina/metabolismo , Inmunoglobulina M
11.
EBioMedicine ; 81: 104109, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35752106

RESUMEN

BACKGROUND: Immunoglobulin G (IgG) antibodies serve a crucial immuno-protective function mediated by IgG Fc receptors (FcγR). Absence of fucose on the highly conserved N-linked glycan in the IgG Fc domain strongly enhances IgG binding and activation of myeloid and natural killer (NK) cell FcγRs. Although afucosylated IgG can provide increased protection (malaria and HIV), it also boosts immunopathologies in alloimmune diseases, COVID-19 and dengue fever. Quantifying IgG fucosylation currently requires sophisticated methods such as liquid chromatography-mass spectrometry (LC-MS) and extensive analytical skills reserved to highly specialized laboratories. METHODS: Here, we introduce the Fucose-sensitive Enzyme-linked immunosorbent assay (ELISA) for Antigen-Specific IgG (FEASI), an immunoassay capable of simultaneously quantitating and qualitatively determining IgG responses. FEASI is a two-tier immunoassay; the first assay is used to quantify antigen-specific IgG (IgG ELISA), while the second gives FcγRIIIa binding-dependent readout which is highly sensitive to both the IgG quantity and the IgG Fc fucosylation (FcγR-IgG ELISA). FINDINGS: IgG Fc fucosylation levels, independently determined by LC-MS and FEASI, in COVID-19 responses to the spike (S) antigen, correlated very strongly by simple linear regression (R2=0.93, p < 0.0001). The FEASI method was then used to quantify IgG levels and fucosylation in COVID-19 convalescent plasma which was independently validated by LC-MS. INTERPRETATION: FEASI can be reliably implemented to measure relative and absolute IgG Fc fucosylation and quantify binding of antigen-specific IgG to FcγR in a high-throughput manner accessible to all diagnostic and research laboratories. FUNDING: This work was funded by the Stichting Sanquin Bloedvoorziening (PPOC 19-08 and SQI00041) and ZonMW 10430 01 201 0021.


Asunto(s)
Fucosa , Inmunoglobulina G , Receptores de IgG , COVID-19/diagnóstico , COVID-19/terapia , Ensayo de Inmunoadsorción Enzimática/métodos , Fucosa/química , Fucosa/metabolismo , Humanos , Inmunización Pasiva , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Receptores de IgG/química , Sueroterapia para COVID-19
12.
Front Med Technol ; 4: 867982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419561

RESUMEN

One of the major breakthroughs to combat the current Coronavirus Disease 2019 (COVID-19) pandemic has been the development of highly effective vaccines against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Still, alternatives are needed for individuals who are at high risk of developing severe COVID-19 and are not protected by vaccination. Monoclonal antibodies against the spike protein of SARS-CoV-2 have been shown to be effective as prophylaxis and treatment against COVID-19. However, the emergence of variants of concern (VOCs) challenges the efficacy of antibody therapies. This review describes the neutralization resistance of the clinically-approved monoclonal antibody therapies against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1), Delta (B.1.617.2), and the Omicron (B.1.1.529) variants. To guide the development of monoclonal antibody therapies and to anticipate on the continuous evolution of SARS-CoV-2, we highlight different strategies to broaden the antibody activity by targeting more conserved epitopes and/or simultaneously targeting multiple sites of vulnerability of the virus. This review further describes the contribution of antibody Fc effector functions to optimize the antibody efficacy. In addition, the main route of SARS-CoV-2 antibody administration is currently intravenously and dictates a monthly injection when used as prophylactic. Therefore, we discusses the concept of long-acting antibodies (LAABs) and non-intravenously routes of antibody administration in order to broaden the clinical applicability of antibody therapies.

14.
MAbs ; 13(1): 1982847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34674601

RESUMEN

The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcÉ£R). FcÉ£RIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward FcÉ£RIIIb (KD ~ 10 µM) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography-mass spectrometry (AC-MS) assay for analyzing IgG-FcÉ£RIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on FcÉ£RIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure-function relationships of the IgG-FcÉ£RIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Receptores de IgG , Afinidad de Anticuerpos , Cromatografía de Afinidad , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas , Receptores Fc/metabolismo
15.
Front Immunol ; 12: 708806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276704

RESUMEN

Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , VIH-1/inmunología , Inmunoconjugados/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/inmunología , Receptores CCR5/inmunología , Latencia del Virus
16.
Sci Transl Med ; 13(596)2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33979301

RESUMEN

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Asunto(s)
Anticuerpos Antivirales/química , COVID-19/inmunología , Inmunoglobulina G/química , Macrófagos Alveolares/inmunología , Glicosilación , Humanos , Inflamación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
17.
Front Immunol ; 12: 594773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790888

RESUMEN

Antibody-mediated blood disorders ensue after auto- or alloimmunization against blood cell antigens, resulting in cytopenia. Although the mechanisms of cell destruction are the same as in immunotherapies targeting tumor cells, many factors are still unknown. Antibody titers, for example, often do not strictly correlate with clinical outcome. Previously, we found C-reactive protein (CRP) levels to be elevated in thrombocytopenic patients, correlating with thrombocyte counts, and bleeding severity. Functionally, CRP amplified antibody-mediated phagocytosis of thrombocytes by phagocytes. To investigate whether CRP is a general enhancer of IgG-mediated target cell destruction, we extensively studied the effect of CRP on in vitro IgG-Fc receptor (FcγR)-mediated cell destruction: through respiratory burst, phagocytosis, and cellular cytotoxicity by a variety of effector cells. We now demonstrate that CRP also enhances IgG-mediated effector functions toward opsonized erythrocytes, in particular by activated neutrophils. We performed a first-of-a-kind profiling of CRP binding to all human FcγRs and IgA-Fc receptor I (FcαRI) using a surface plasmon resonance array. CRP bound these receptors with relative affinities of FcγRIa = FcγRIIa/b = FcγRIIIa > FcγRIIIb = FcαRI. Furthermore, FcγR blocking (in particular FcγRIa) abrogated CRP's ability to amplify IgG-mediated neutrophil effector functions toward opsonized erythrocytes. Finally, we observed that CRP also amplified killing of breast-cancer tumor cell line SKBR3 by neutrophils through anti-Her2 (trastuzumab). Altogether, we provide for the first time evidence for the involvement of specific CRP-FcγR interactions in the exacerbation of in vitro IgG-mediated cellular destruction; a trait that should be further evaluated as potential therapeutic target e.g., for tumor eradication.


Asunto(s)
Proteína C-Reactiva/metabolismo , Inmunoglobulina G/inmunología , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Adulto , Animales , Células Cultivadas , Citofagocitosis/inmunología , Citotoxicidad Inmunológica , Eritrocitos/inmunología , Femenino , Humanos , Inmunoglobulina G/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estallido Respiratorio/inmunología , Adulto Joven
18.
Cell Rep ; 35(1): 108933, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826885

RESUMEN

Artificial glycan holes on recombinant Env-based vaccines occur when a potential N-linked glycosylation site (PNGS) is under-occupied, but not on their viral counterparts. Native-like SOSIP trimers, including clinical candidates, contain such holes in the glycan shield that induce strain-specific neutralizing antibodies (NAbs) or non-NAbs. To eliminate glycan holes and mimic the glycosylation of native BG505 Env, we replace all 12 NxS sequons on BG505 SOSIP with NxT. All PNGS, except N133 and N160, are nearly fully occupied. Occupancy of the N133 site is increased by changing N133 to NxS, whereas occupancy of the N160 site is restored by reverting the nearby N156 sequon to NxS. Hence, PNGS in close proximity, such as in the N133-N137 and N156-N160 pairs, affect each other's occupancy. We further apply this approach to improve the occupancy of several Env strains. Increasing glycan occupancy should reduce off-target immune responses to vaccine antigens.


Asunto(s)
VIH-1/metabolismo , Polisacáridos/metabolismo , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Células CHO , Cricetulus , Microscopía por Crioelectrón , Glicosilación , Células HEK293 , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Polisacáridos/química , Solubilidad , Productos del Gen env del Virus de la Inmunodeficiencia Humana/ultraestructura
19.
Science ; 371(6532)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33361116

RESUMEN

Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger FcγRIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , COVID-19/fisiopatología , Células Cultivadas , Enfermedad Crítica , Citomegalovirus/inmunología , Femenino , Fucosa/análisis , Glicosilación , VIH/inmunología , Vacunas contra Hepatitis B/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Inflamación , Interleucina-6/biosíntesis , Interleucina-6/inmunología , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Parvovirus B19 Humano/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Adulto Joven
20.
J Immunol ; 205(12): 3456-3467, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188070

RESUMEN

Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.


Asunto(s)
Secuencia de Aminoácidos , Activación de Complemento , Complemento C1q , Inmunoglobulina G , Receptores de IgG , Eliminación de Secuencia , Resonancia por Plasmón de Superficie , Complemento C1q/química , Complemento C1q/genética , Complemento C1q/inmunología , Glicina/química , Glicina/genética , Glicina/inmunología , Células HEK293 , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...