Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114127, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38652660

RESUMEN

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.

2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645106

RESUMEN

Oscillations, a highly conserved brain function across mammalian species, are pivotal in brain physiology and pathology. Traumatic brain injury (TBI) often leads to subacute and chronic brain oscillatory alterations associated with complications like post-traumatic epilepsy (PTE) in patients and animal models. Our recent work longitudinally recorded local field potential from the contralateral hippocampus of 12 strains of recombinant inbred Collaborative Cross (CC) mice alongside classical laboratory inbred C57BL/6J mice after lateral fluid percussion injury. In this study, we profiled the acute (<12 hr post-injury) and subacute (12-48 hr post-injury) hippocampal oscillatory responses to TBI and evaluated their predictive value for PTE. We found dynamic high-amplitude rhythmic spikes with elevated power density and reduced entropy that prevailed during the acute phase in CC031 mice who later developed PTE. This characteristic early brain oscillatory alteration is absent in CC031 sham controls or other CC and reference C57BL/6J strains that did not develop PTE after TBI. Our work provides quantitative measures linking early brain oscillation to PTE at a population level in mice under controlled experimental conditions. These findings will offer insights into circuit mechanisms and potential targets for neuromodulatory intervention.

3.
Virus Res ; 344: 199357, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508400

RESUMEN

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Animales , Humanos , Ratones , SARS-CoV-2/genética , Replicación Viral , Estudio de Asociación del Genoma Completo , COVID-19/virología , Proteínas de Motivos Tripartitos/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Modelos Animales de Enfermedad
4.
Exp Neurol ; 374: 114677, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185315

RESUMEN

Traumatic brain injury (TBI) is a complex and heterogeneous condition that can cause wide-spectral neurological sequelae such as behavioral deficits, sleep abnormalities, and post-traumatic epilepsy (PTE). However, understanding the interaction of TBI phenome is challenging because few animal models can recapitulate the heterogeneity of TBI outcomes. We leveraged the genetically diverse recombinant inbred Collaborative Cross (CC) mice panel and systematically characterized TBI-related outcomes in males from 12 strains of CC and the reference C57BL/6J mice. We identified unprecedented extreme responses in multiple clinically relevant traits across CC strains, including weight change, mortality, locomotor activity, cognition, and sleep. Notably, we identified CC031 mouse strain as the first rodent model of PTE that exhibit frequent and progressive post-traumatic seizures after moderate TBI induced by lateral fluid percussion. Multivariate analysis pinpointed novel biological interactions and three principal components across TBI-related modalities. Estimate of the proportion of TBI phenotypic variability attributable to strain revealed large range of heritability, including >70% heritability of open arm entry time of elevated plus maze. Our work provides novel resources and models that can facilitate genetic mapping and the understanding of the pathobiology of TBI and PTE.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Masculino , Ratones , Animales , Epilepsia Postraumática/etiología , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Modelos Animales de Enfermedad , Variación Genética
5.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745496

RESUMEN

Background: The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective: To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods: A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results: Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion: Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.

6.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398475

RESUMEN

Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.

7.
Genome Biol ; 24(1): 52, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944993

RESUMEN

BACKGROUND: Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. RESULTS: We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. CONCLUSIONS: Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Fosforilación , Diabetes Mellitus Tipo 2/genética , Multiómica , Sitios de Carácter Cuantitativo , Péptidos/genética
8.
PLoS Genet ; 18(12): e1010548, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574452

RESUMEN

Variation in immune homeostasis, the state in which the immune system is maintained in the absence of stimulation, is highly variable across populations. This variation is attributed to both genetic and environmental factors. However, the identity and function of specific regulators have been difficult to identify in humans. We evaluated homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse genetic reference population. We found heritable variation in all antibody isotypes and subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL map to genome regions of known immunological significance (major histocompatibility and immunoglobulin heavy chain locus), Qih1 (associated with variation in IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus with B cell proportions in the spleen and identify Methyl-CpG binding domain protein 1 under this locus as a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting cells.


Asunto(s)
Ratones de Colaboración Cruzada , Sitios de Carácter Cuantitativo , Ratones , Humanos , Animales , Sitios de Carácter Cuantitativo/genética , Ratones de Colaboración Cruzada/genética , Activación de Linfocitos , Inmunoglobulina G/genética , Homeostasis/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
9.
Heredity (Edinb) ; 129(3): 183-194, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764696

RESUMEN

House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.


Asunto(s)
Genoma , Endogamia , Animales , Evolución Biológica , Europa (Continente) , Humanos , Ratones , Nueva Zelanda
11.
bioRxiv ; 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34013261

RESUMEN

Sarbecovirus (CoV) infections, including Severe Acute Respiratory CoV (SARS-CoV) and SARS-CoV-2, are considerable human threats. Human GWAS studies have recently identified loci associated with variation in SARS-CoV-2 susceptibility. However, genetically tractable models that reproduce human CoV disease outcomes are needed to mechanistically evaluate genetic determinants of CoV susceptibility. We used the Collaborative Cross (CC) and human GWAS datasets to elucidate host susceptibility loci that regulate CoV infections and to identify host quantitative trait loci that modulate severe CoV and pan-CoV disease outcomes including a major disease regulating loci including CCR9. CCR9 ablation resulted in enhanced titer, weight loss, respiratory dysfunction, mortality, and inflammation, providing mechanistic support in mitigating protection from severe SARS-CoV-2 pathogenesis across species. This study represents a comprehensive analysis of susceptibility loci for an entire genus of human pathogens conducted, identifies a large collection of susceptibility loci and candidate genes that regulate multiple aspects type-specific and cross-CoV pathogenesis, and also validates the paradigm of using the CC platform to identify common cross-species susceptibility loci and genes for newly emerging and pre-epidemic viruses.

12.
Toxicology ; 452: 152696, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33524430

RESUMEN

Arsenic methyltransferase (AS3MT) is the key enzyme in the pathway for the methylation of inorganic arsenic (iAs), a potent human carcinogen and diabetogen. AS3MT converts iAs to mono- and dimethylated arsenic species (MAs, DMAs) that are excreted mainly in urine. Polymorphisms in AS3MT is a key genetic factor affecting iAs metabolism and toxicity. The present study examined the role of As3mt polymorphisms in the susceptibility to the diabetogenic effects of iAs exposure using two Collaborative Cross mouse strains, CC021/Unc and CC027/GeniUnc, carrying different As3mt haplotypes. Male mice from the two strains were exposed to iAs in drinking water (0, 0.1 or 50 ppm) for 11 weeks. Blood glucose and plasma insulin levels were measured after 6-h fasting and 15 min after i.p. injection of glucose. Body composition was determined using magnetic resonance imaging. To asses iAs metabolism, the concentrations of iAs, MAs and DMAs were measured in urine. The results show that CC021 mice, both iAs-exposed and controls, had higher body fat percentage, lower fasting blood glucose, higher fasting plasma insulin, and were more insulin resistant than their CC027 counterparts. iAs exposure had a minor effect on diabetes indicators and only in CC027 mice. Blood glucose levels 15 min after glucose injection were significantly higher in CC027 mice exposed to 0.1 ppm iAs than in control mice. No significant differences were found in the concentrations or proportions of arsenic species in urine of CC021 and CC027 mice at the same exposure level. These results suggest that the differences in As3mt haplotypes did not affect the profiles of iAs or its metabolites in mouse urine. The major differences in diabetes indicators were associated with the genetic backgrounds of CC021 and CC027 mice. The effects of iAs exposure, while minor, were genotype- and dose-dependent.


Asunto(s)
Arsénico/toxicidad , Antecedentes Genéticos , Metiltransferasas/genética , Fenotipo , Animales , Composición Corporal/efectos de los fármacos , Composición Corporal/genética , Relación Dosis-Respuesta a Droga , Resistencia a la Insulina/genética , Masculino , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Especificidad de la Especie
13.
NPJ Vaccines ; 6(1): 17, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500417

RESUMEN

This study tests the hypothesis that an Onchocerca volvulus vaccine, consisting of two recombinant antigens (Ov-103 and Ov-RAL-2) formulated with the combination-adjuvant Advax-2, can induce protective immunity in genetically diverse Collaborative Cross recombinant inbred intercross mice (CC-RIX). CC-RIX lines were immunized with the O. volvulus vaccine and challenged with third-stage larvae. Equal and significant reductions in parasite survival were observed in 7 of 8 CC-RIX lines. Innate protective immunity was seen in the single CC-RIX line that did not demonstrate protective adaptive immunity. Analysis of a wide array of immune factors showed that each line of mice have a unique set of immune responses to vaccination and challenge suggesting that the vaccine is polyfunctional, inducing different equally-protective sets of immune responses based on the genetic background of the immunized host. Vaccine efficacy in genetically diverse mice suggests that it will also be effective in genetically complex human populations.

14.
Cell Genom ; 1(1)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36212994

RESUMEN

Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice and their founder strains. We show concordance across the proteomics datasets despite being generated from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory effects on individual proteins are conserved across the mouse populations, in particular for local genetic variation and sex differences. In comparison, proteins that form complexes are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and map fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the regulation of the proteome.

15.
bioRxiv ; 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32995791

RESUMEN

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease. SUMMARY: We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.

16.
Psychopharmacology (Berl) ; 237(4): 979-996, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31897574

RESUMEN

RATIONALE: Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. OBJECTIVES: Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. METHODS: Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. RESULTS: RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. CONCLUSIONS: These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Cocaína/administración & dosificación , Ratones de Colaboración Cruzada/genética , Locomoción/genética , Refuerzo en Psicología , Recompensa , Animales , Conducta Adictiva/genética , Conducta Adictiva/metabolismo , Conducta Adictiva/psicología , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/administración & dosificación , Femenino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Autoadministración , Especificidad de la Especie
17.
Arch Toxicol ; 93(10): 2811-2822, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493028

RESUMEN

Mice have been frequently used to study the adverse effects of inorganic arsenic (iAs) exposure in laboratory settings. Like humans, mice metabolize iAs to monomethyl-As (MAs) and dimethyl-As (DMAs) metabolites. However, mice metabolize iAs more efficiently than humans, which may explain why some of the effects of iAs reported in humans have been difficult to reproduce in mice. In the present study, we searched for mouse strains in which iAs metabolism resembles that in humans. We examined iAs metabolism in male mice from 12 genetically diverse Collaborative Cross (CC) strains that were exposed to arsenite in drinking water (0.1 or 50 ppm) for 2 weeks. Concentrations of iAs and its metabolites were measured in urine and livers. Significant differences in total As concentration and in proportions of total As represented by iAs, MAs, and DMAs were observed between the strains. These differences were more pronounced in livers, particularly in mice exposed to 50 ppm iAs. In livers, large variations among the strains were found in percentage of iAs (15-48%), MAs (11-29%), and DMAs (29-66%). In contrast, DMAs represented 96-99% of total As in urine in all strains regardless of exposure. Notably, the percentages of As species in urine did not correlate with total As concentration in liver, suggesting that the urinary profiles were not representative of the internal exposure. In livers of mice exposed to 50 ppm, but not to 0.1 ppm iAs, As3mt expression correlated with percent of iAs and DMAs. No correlations were found between As3mt expression and the proportions of As species in urine regardless of exposure level. Although we did not find yet a CC strain in which proportions of As species in urine would match those reported in humans (typically 10-30% iAs, 10-20% MAs, 60-70% DMAs), CC strains characterized by low %DMAs in livers after exposure to 50 ppm iAs (suggesting inefficient iAs methylation) could be better models for studies aiming to reproduce effects of iAs described in humans.


Asunto(s)
Arsénico/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Animales , Arsénico/administración & dosificación , Relación Dosis-Respuesta a Droga , Variación Genética , Masculino , Ratones , Especificidad de la Especie , Distribución Tisular , Contaminantes Químicos del Agua/administración & dosificación
18.
Mamm Genome ; 30(1-2): 42, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30515527

RESUMEN

The original article has been published with an incorrect text in Materials and Methods section. The corrected text should read as.

19.
G3 (Bethesda) ; 8(11): 3447-3468, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30171036

RESUMEN

Parent-of-origin effects (POE) in mammals typically arise from maternal effects or imprinting. In some instances, such POE have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. However, POE on complex traits such as behavior remain largely uncharacterized. Moreover, although both behavior and epigenetic effects are known to be modified by perinatal environmental exposures such as nutrient deficiency, the architecture of such environment-by-POE is mostly unexplored. To study POE and environment-by-POE, we employ a relatively neglected but especially powerful experimental system for POE-detection: reciprocal F1 hybrids (RF1s). We exposed female NOD/ShiLtJ×C57Bl/6J and C57Bl/6J×NOD/ShiLtJ mice, perinatally, to one of four different diets, then after weaning recorded a set of behaviors that model psychiatric disease. Whole-brain microarray expression data revealed an imprinting-enriched set of 15 genes subject to POE. The most-significant expression POE, on the non-imprinted gene Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Bayesian mediation analysis suggested Carmil1 expression suppresses behavioral POE, and that the imprinted gene Airn suppresses POE on Carmil1 expression. A suggestive diet-by-POE was observed on percent center time in the open field test, and a significant diet-by-POE was observed on one imprinted gene, Mir341, and on 16 non-imprinted genes. The relatively small, tractable set of POE and diet-by-POE detected on behavior and expression here motivates further studies examining such effects across RF1s on multiple genetic backgrounds.


Asunto(s)
Conducta Animal , Dieta , Impresión Genómica , Ratones Endogámicos C57BL/genética , Ratones Endogámicos NOD/genética , Animales , Encéfalo/metabolismo , Femenino , Masculino , Estrés Psicológico , Análisis de Matrices Tisulares
20.
Physiol Rep ; 6(12): e13716, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29924460

RESUMEN

Exercise results in beneficial health outcomes and protects against a variety of chronic diseases. However, U.S. exercise guidelines recommend identical exercise programs for everyone, despite individual variation in responses to these programs, including paradoxical fat gain. Experimental models of exercise-induced paradoxical outcomes may enable the dissection of underlying physiological mechanisms as well as the evaluation of potential interventions. Whereas several studies have identified individual mice exhibiting paradoxical fat gain following exercise, no systematic effort has been conducted to identify and characterize models of paradoxical response. Strains from the Collaborative Cross (CC) genetic reference population were used due to its high levels of genetic variation, its reproducible nature, and the observation that the CC is a rich source of novel disease models, to assess the impact genetic background has on exercise responses. We identified the strain CC002/Unc as an exercise-induced paradoxical fat response model in a controlled voluntary exercise study across multiple ages in female mice. We also found sex and genetic differences were consistent with this pattern in a study of forced exercise programs. These results provide a novel model for studies to determine the mechanisms behind paradoxical metabolic responses to exercise, and enable development of more rational personalized exercise recommendations based on factors such as age, sex, and genetic background.


Asunto(s)
Tejido Adiposo/fisiología , Modelos Animales de Enfermedad , Condicionamiento Físico Animal/fisiología , Animales , Biometría/métodos , Composición Corporal/fisiología , Peso Corporal/fisiología , Femenino , Masculino , Ratones Endogámicos , Esfuerzo Físico/fisiología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...