Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Immunol ; 15: 1342977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698847

RESUMEN

Introduction: Aberrant reactive oxygen species (ROS) production is one of the hallmarks of cancer. During their growth and dissemination, cancer cells control redox signaling to support protumorigenic pathways. As a consequence, cancer cells become reliant on major antioxidant systems to maintain a balanced redox tone, while avoiding excessive oxidative stress and cell death. This concept appears especially relevant in the context of glioblastoma multiforme (GBM), the most aggressive form of brain tumor characterized by significant heterogeneity, which contributes to treatment resistance and tumor recurrence. From this viewpoint, this study aims to investigate whether gene regulatory networks can effectively capture the diverse redox states associated with the primary phenotypes of GBM. Methods: In this study, we utilized publicly available GBM datasets along with proprietary bulk sequencing data. Employing computational analysis and bioinformatics tools, we stratified GBM based on their antioxidant capacities and evaluated the distinctive functionalities and prognostic values of distinct transcriptional networks in silico. Results: We established three distinct transcriptional co-expression networks and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits strong antioxidant properties, C2 is marked with a discrepant inflammatory trait and C3 was identified as the cluster with the weakest antioxidant capacity. Intriguingly, C2 exhibited a strong correlation with the highly aggressive mesenchymal subtype of GBM. Furthermore, this cluster holds substantial prognostic importance: patients with higher gene set variation analysis (GSVA) scores of the C2 signature exhibited adverse outcomes in overall and progression-free survival. Conclusion: In summary, we provide a set of transcriptional signatures that unveil the antioxidant potential of GBM, offering a promising prognostic application and a guide for therapeutic strategies in GBM therapy.


Asunto(s)
Antioxidantes , Neoplasias Encefálicas , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma , Oxidación-Reducción , Fenotipo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Antioxidantes/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Biología Computacional/métodos , Pronóstico , Perfilación de la Expresión Génica , Transcriptoma
2.
Hum Brain Mapp ; 45(6): e26662, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646998

RESUMEN

OBJECTIVES: Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth. METHODS: Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes. RESULTS: Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05). CONCLUSIONS: CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión Tensora , Estimulación Eléctrica , Humanos , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/normas , Adulto , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Estimulación Eléctrica/métodos , Mapeo Encefálico/métodos , Mapeo Encefálico/normas , Tractos Piramidales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Cuidados Preoperatorios/métodos , Cuidados Preoperatorios/normas , Anciano
3.
BMJ Open ; 14(4): e082274, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684246

RESUMEN

INTRODUCTION: A greater extent of resection of the contrast-enhancing (CE) tumour part has been associated with improved outcomes in glioblastoma. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in high-grade glioma (HGG) patients in terms of survival, functional, neurological, cognitive and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. METHODS AND ANALYSIS: This study is an international, multicentre, prospective, two-arm cohort study of observational nature. Consecutive glioblastoma patients will be operated with SMR or maximal resection at a 1:1 ratio. Primary endpoints are (1) overall survival and (2) proportion of patients with National Institute of Health Stroke Scale deterioration at 6 weeks, 3 months and 6 months postoperatively. Secondary endpoints are (1) residual CE and NCE tumour volume on postoperative T1-contrast and FLAIR (Fluid-attenuated inversion recovery) MRI scans; (2) progression-free survival; (3) receipt of adjuvant therapy with chemotherapy and radiotherapy; and (4) quality of life at 6 weeks, 3 months and 6 months postoperatively. The total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. ETHICS AND DISSEMINATION: The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Calidad de Vida , Humanos , Neoplasias Encefálicas/cirugía , Glioblastoma/cirugía , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto , Procedimientos Neuroquirúrgicos/métodos , Estudios Prospectivos
4.
Anal Chem ; 96(10): 4266-4274, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469638

RESUMEN

We introduce a novel approach for comprehensive molecular profiling in biological samples. Our single-section methodology combines quantitative mass spectrometry imaging (Q-MSI) and a single step extraction protocol enabling lipidomic and proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis on the same tissue area. The integration of spatially correlated lipidomic and proteomic data on a single tissue section allows for a comprehensive interpretation of the molecular landscape. Comparing Q-MSI and Q-LC-MS/MS quantification results sheds new light on the effect of MSI and related sample preparation. Performing MSI before Q-LC-MS on the same tissue section led to fewer protein identifications and a lower correlation between lipid quantification results. Also, the critical role and influence of internal standards in Q-MSI for accurate quantification is highlighted. Testing various slide types and the evaluation of different workflows for single-section spatial multiomics analysis emphasized the need for critical evaluation of Q-MSI data. These findings highlight the necessity for robust quantification methods comparable to current gold-standard LC-MS/MS techniques. The spatial information from MSI allowed region-specific insights within heterogeneous tissues, as demonstrated for glioblastoma multiforme. Additionally, our workflow demonstrated the efficiency of a single step extraction for lipidomic and proteomic analyses on the same tissue area, enabling the examination of significantly altered proteins and lipids within distinct regions of a single section. The integration of these insights into a lipid-protein interaction network expands the biological information attainable from a tissue section, highlighting the potential of this comprehensive approach for advancing spatial multiomics research.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cromatografía Liquida , Flujo de Trabajo , Cromatografía Líquida con Espectrometría de Masas , Proteómica/métodos , Lípidos/análisis
5.
J Neurosurg ; : 1-9, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394657

RESUMEN

OBJECTIVE: CSF leakage is a major complication after cranial surgery, and although fibrin sealants are widely used for reinforcing dural closure, concerns exist regarding their safety, efficacy, and cost. Leukocyte- and platelet-rich fibrin (L-PRF), an autologous platelet concentrate, is readily available and inexpensive, making it a cost-effective alternative for commercially available fibrin sealants. This study aimed to demonstrate the noninferiority of L-PRF compared with commercially available fibrin sealants in preventing postoperative CSF leakage in supra- and infratentorial cranial surgery, with secondary outcomes focused on CSF leakage risk factors and adverse events. METHODS: In a single-blinded, prospective, randomized controlled interventional trial conducted at a neurosurgery department of a tertiary care center (UZ Leuven, Belgium), patients undergoing elective cranial neurosurgery were randomly assigned to receive either L-PRF (active treatment) or commercially available fibrin sealants (control) for dural closure in a 1:1 ratio. RESULTS: Among 350 included patients, 328 were analyzed for the primary endpoint (44.5% male, mean age 52.3 ± 15.1 years). Six patients (5 in the control group, 1 in the L-PRF group) presented with CSF leakage requiring any intervention (relative risk [RR] 0.20, one-sided 95% CI -∞ to 1.02, p = 0.11), confirming noninferiority. Of these 6 patients, 1 (in the control group) presented with CSF leakage requiring revision surgery. No risk factors for reconstruction failure in combination with L-PRF were identified. RRs for adverse events such as infection (0.72, 95% CI -∞ to 1.96) and meningitis (0.36, 95% CI -∞ to 1.25) favored L-PRF treatment, although L-PRF treatment showed slightly more bleeding events (1.44, 95% CI -∞ to 4.66). CONCLUSIONS: Dural reinforcement with L-PRF proved noninferior to commercially available fibrin sealants, with no safety issues. Introducing L-PRF to standard clinical practice could result in important cost savings due to accessibility and lower cost. Clinical trial registration no.: NCT03812120 (ClinicalTrials.gov).

6.
Cell Rep Med ; 5(1): 101377, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232703

RESUMEN

Current immunotherapies provide limited benefits against T cell-depleted tumors, calling for therapeutic innovation. Using multi-omics integration of cancer patient data, we predict a type I interferon (IFN) responseHIGH state of dendritic cell (DC) vaccines, with efficacious clinical impact. However, preclinical DC vaccines recapitulating this state by combining immunogenic cancer cell death with induction of type I IFN responses fail to regress mouse tumors lacking T cell infiltrates. Here, in lymph nodes (LNs), instead of activating CD4+/CD8+ T cells, DCs stimulate immunosuppressive programmed death-ligand 1-positive (PD-L1+) LN-associated macrophages (LAMs). Moreover, DC vaccines also stimulate PD-L1+ tumor-associated macrophages (TAMs). This creates two anatomically distinct niches of PD-L1+ macrophages that suppress CD8+ T cells. Accordingly, a combination of PD-L1 blockade with DC vaccines achieves significant tumor regression by depleting PD-L1+ macrophages, suppressing myeloid inflammation, and de-inhibiting effector/stem-like memory T cells. Importantly, clinical DC vaccines also potentiate T cell-suppressive PD-L1+ TAMs in glioblastoma patients. We propose that a multimodal immunotherapy and vaccination regimen is mandatory to overcome T cell-depleted tumors.


Asunto(s)
Glioblastoma , Vacunas , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Antígeno B7-H1 , Macrófagos , Células Dendríticas , Ganglios Linfáticos/metabolismo , Vacunas/metabolismo
7.
Neuro Oncol ; 26(1): 191-202, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37651614

RESUMEN

BACKGROUND: Survival data of diffuse adult-type glioma is mostly based on prospective clinical trials or small retrospective cohort studies. Real-world data with large patient cohorts is currently lacking. METHODS: Using the nationwide, population-based Belgian Cancer Registry, all known histological reports of patients diagnosed with an adult-type diffuse glioma in Belgium between 2017 and 2019 were reviewed. The ICD-O-3 morphology codes were matched with the histological diagnosis. The gathered data were transformed into the 2021 World Health Organization classification of CNS tumors using the IDH- and 1p/19q-mutation status. RESULTS: Between 2017 and 2019, 2233 diffuse adult-type gliomas were diagnosed in Belgium. Full molecular status was available in 67.1% of identified cases. The age-standardized incidence rate of diffuse adult-type glioma in Belgium was estimated at 8.55 per 100 000 person-years and 6.72 per 100 000 person-years for grade 4 lesions. Median overall survival time in IDH-wild-type glioblastoma was 9.3 months, significantly shorter compared to grade 4 IDH-mutant astrocytoma (median survival time: 25.9 months). The 3-year survival probability was 86.0% and 75.7% for grades 2 and 3 IDH-mutated astrocytoma. IDH-wild-type astrocytoma has a worse prognosis with a 3-year survival probability of 31.6% for grade 2 and 5.7% for grade 3 lesions. CONCLUSIONS: This registry-based study presents a large cohort of adult-type diffuse glioma with known molecular status and uses real-world survival data. It adds to the current literature which is mainly based on historical landmark trials and smaller retrospective cohort studies.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Humanos , Bélgica/epidemiología , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/genética , Estudios Retrospectivos , Estudios Prospectivos , Glioma/epidemiología , Glioma/genética , Glioma/patología , Mutación , Isocitrato Deshidrogenasa/genética
8.
EMBO Mol Med ; 15(11): e18144, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37791581

RESUMEN

Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Glioblastoma/patología , Pez Cebra , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/uso terapéutico , Línea Celular Tumoral , Macrófagos/metabolismo , Neoplasias Encefálicas/patología , Microambiente Tumoral/genética
9.
Oncoimmunology ; 12(1): 2219591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284695

RESUMEN

Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Muerte Celular , Muerte Celular Inmunogénica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Citocinas/metabolismo
10.
Cell Mol Life Sci ; 80(7): 179, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314567

RESUMEN

Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models. In GBM patients, CCR7 expression positively associated with a poor survival. CCL21-CCR7 signaling was shown to regulate tumor cell migration and proliferation while also controlling tumor associated microglia/macrophage recruitment and VEGF-A production, thereby controlling vascular dysmorphia. Inhibition of CCL21-CCR7 signaling led to an increased sensitivity to temozolomide-induced tumor cell death. Collectively, our data indicate that drug targeting of CCL21-CCR7 signaling in tumor and TME cells is a therapeutic option against GBM.


Asunto(s)
Glioblastoma , Microglía , Animales , Ratones , Humanos , Glioblastoma/tratamiento farmacológico , Receptores CCR7/genética , Macrófagos , Sistema Nervioso Central , Microambiente Tumoral , Quimiocina CCL21
11.
Chem Soc Rev ; 52(14): 4672-4724, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37338993

RESUMEN

The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.


Asunto(s)
Nanopartículas , Neoplasias , Embarazo , Humanos , Femenino , Portadores de Fármacos/uso terapéutico , Distribución Tisular , Placenta/patología , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
12.
Cell Mol Life Sci ; 80(6): 147, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171617

RESUMEN

BACKGROUND: Functional profiling of freshly isolated glioblastoma (GBM) cells is being evaluated as a next-generation method for precision oncology. While promising, its success largely depends on the method to evaluate treatment activity which requires sufficient resolution and specificity. METHODS: Here, we describe the 'precision oncology by single-cell profiling using ex vivo readouts of functionality' (PROSPERO) assay to evaluate the intrinsic susceptibility of high-grade brain tumor cells to respond to therapy. Different from other assays, PROSPERO extends beyond life/death screening by rapidly evaluating acute molecular drug responses at single-cell resolution. RESULTS: The PROSPERO assay was developed by correlating short-term single-cell molecular signatures using mass cytometry by time-of-flight (CyTOF) to long-term cytotoxicity readouts in representative patient-derived glioblastoma cell cultures (n = 14) that were exposed to radiotherapy and the small-molecule p53/MDM2 inhibitor AMG232. The predictive model was subsequently projected to evaluate drug activity in freshly resected GBM samples from patients (n = 34). Here, PROSPERO revealed an overall limited capacity of tumor cells to respond to therapy, as reflected by the inability to induce key molecular markers upon ex vivo treatment exposure, while retaining proliferative capacity, insights that were validated in patient-derived xenograft (PDX) models. This approach also allowed the investigation of cellular plasticity, which in PDCLs highlighted therapy-induced proneural-to-mesenchymal (PMT) transitions, while in patients' samples this was more heterogeneous. CONCLUSION: PROSPERO provides a precise way to evaluate therapy efficacy by measuring molecular drug responses using specific biomarker changes in freshly resected brain tumor samples, in addition to providing key functional insights in cellular behavior, which may ultimately complement standard, clinical biomarker evaluations.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Medicina de Precisión , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
13.
Sci Transl Med ; 15(691): eadd1016, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043555

RESUMEN

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.


Asunto(s)
Glioblastoma , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Glioblastoma/metabolismo , Multiómica , Receptores de Antígenos de Linfocitos T/metabolismo
14.
Pathobiology ; 90(6): 365-376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36702113

RESUMEN

INTRODUCTION: The objective of this study was to cross-check and, if necessary, adjust registered ICD-O-3 topography and morphology codes with the findings in pathology reports available at the Belgian Cancer Registry (BCR) for glioma patients. Additionally, integration of molecular markers in the pathological diagnosis and concordance with WHO 2016 classification is investigated. METHODS: Since information regarding molecular tests and corresponding conclusions are not available as structured data at population level, a manual screening of all pseudonymized pathology reports available at the BCR for registered glioma patients (2017-2019) was conducted. ICD-O-3 morphology and topography codes from the BCR database (based on information as provided by hospital oncological care programmes and pathology laboratories), were, at tumour level, cross-checked with the data from the pathology reports and, if needed, specified or corrected. Relevant molecular markers (IDH1/2, 1p19q codeletion, promoter region of the MGMT gene [MGMTp]) were manually extracted from the pathology reports. RESULTS: In 95.3% of gliomas, the ICD-O-3 morphology code was correct. Non-specific topography codes were specified in 9.3%, while 3.3% of specific codes were corrected. The IDH status was known in 75.2% of astrocytic tumours. The rate of correct integrated diagnoses varied from 47.6% to 56.4% among different gliomas. MGMTp methylation status was available in 32.2% of glioblastomas. CONCLUSION: Both the integration of molecular markers in the conclusion of the pathology reports and the delivery of those reports to the BCR can be improved. The availability of distinct ICD-O-3 codes for each molecularly defined tumour entity within the WHO classification would increase the consistency of cancer registration, facilitate population level research and international benchmarking.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Bélgica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico , Glioma/genética , Biomarcadores , Organización Mundial de la Salud , Isocitrato Deshidrogenasa/genética , Mutación
15.
Neuro Oncol ; 25(5): 958-972, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36420703

RESUMEN

BACKGROUND: The impact of extent of resection (EOR), residual tumor volume (RTV), and gross-total resection (GTR) in glioblastoma subgroups is currently unknown. This study aimed to analyze their impact on patient subgroups in relation to neurological and functional outcomes. METHODS: Patients with tumor resection for eloquent glioblastoma between 2010 and 2020 at 4 tertiary centers were recruited from a cohort of 3919 patients. RESULTS: One thousand and forty-seven (1047) patients were included. Higher EOR and lower RTV were significantly associated with improved overall survival (OS) and progression-free survival (PFS) across all subgroups, but RTV was a stronger prognostic factor. GTR based on RTV improved median OS in the overall cohort (19.0 months, P < .0001), and in the subgroups with IDH wildtype tumors (18.5 months, P = .00055), MGMT methylated tumors (35.0 months, P < .0001), aged <70 (20.0 months, P < .0001), NIHSS 0-1 (19.0 months, P = .0038), KPS 90-100 (19.5 months, P = .0012), and KPS ≤80 (17.0 months, P = .036). GTR was significantly associated with improved OS in the overall cohort (HR 0.58, P = .0070) and improved PFS in the NIHSS 0-1 subgroup (HR 0.47, P = .012). GTR combined with preservation of neurological function (OFO 1 grade) yielded the longest survival times (median OS 22.0 months, P < .0001), which was significantly more frequently achieved in the awake mapping group (50.0%) than in the asleep group (21.8%) (P < .0001). CONCLUSIONS: Maximum resection was especially beneficial in the subgroups aged <70, NIHSS 0-1, and KPS 90-100 without increasing the risk of postoperative NIHSS or KPS worsening. These findings may assist surgical decision making in individual glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Estudios Retrospectivos , Supervivencia sin Progresión , Procedimientos Neuroquirúrgicos
16.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38201490

RESUMEN

(1) Background: This study evaluates the impact of the COVID-19 pandemic on the incidence, treatment, and survival of adults diagnosed with malignant brain tumors in Belgium in 2020. (2) Methods: We examined patients aged 20 and older with malignant brain tumors (2004-2020) from the Belgian Cancer Registry database, assessing incidence, WHO performance status, vital status, and treatment data. We compared 2020 incidence rates with projected rates and age-standardized rates to 2015-2019. The Kaplan-Meier method was used to assess observed survival (OS). (3) Results: In 2020, there was an 8% drop in age-specific incidence rates, particularly for those over 50. Incidence rates plunged by 37% in April 2020 during the first COVID-19 peak but partially recovered by July. For all malignant brain tumors together, the two-year OS decreased by four percentage points (p.p.) in 2020 and three p.p. in 2019, compared to that in 2015-2018. Fewer patients (-9 p.p.) with glioblastoma underwent surgery, and the proportion of patients not receiving surgery, radiotherapy, or systemic therapy increased by six percentage points in 2020. (4) Conclusions: The COVID-19 pandemic profoundly impacted the diagnosis, treatment strategies, and survival of brain tumor patients in Belgium during 2020. These findings should guide policymakers in future outbreak responses, emphasizing the need to maintain or adapt (neuro)-oncological care pathways and promote informed decision making when care capacity is limited.

18.
Front Oncol ; 12: 988872, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338708

RESUMEN

Glioblastoma is a highly lethal grade of astrocytoma with very low median survival. Despite extensive efforts, there is still a lack of alternatives that might improve these prospects. We uncovered that the chemotherapeutic agent temozolomide impinges on fatty acid synthesis and desaturation in newly diagnosed glioblastoma. This response is, however, blunted in recurring glioblastoma from the same patient. Further, we describe that disrupting cellular fatty acid homeostasis in favor of accumulation of saturated fatty acids such as palmitate synergizes with temozolomide treatment. Pharmacological inhibition of SCD and/or FADS2 allows palmitate accumulation and thus greatly augments temozolomide efficacy. This effect was independent of common GBM prognostic factors and was effective against cancer cells from recurring glioblastoma. In summary, we provide evidence that intracellular accumulation of saturated fatty acids in conjunction with temozolomide based chemotherapy induces death in glioblastoma cells derived from patients.

19.
Discov Oncol ; 13(1): 123, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355227

RESUMEN

Brain tumour identification and delineation in a timeframe of seconds would significantly guide and support surgical decisions. Here, treatment is often complicated by the infiltration of gliomas in the surrounding brain parenchyma. Accurate delineation of the invasive margins is essential to increase the extent of resection and to avoid postoperative neurological deficits. Currently, histopathological annotation of brain biopsies and genetic phenotyping still define the first line treatment, where results become only available after surgery. Furthermore, adjuvant techniques to improve intraoperative visualisation of the tumour tissue have been developed and validated. In this review, we focused on the sensitivity and specificity of conventional techniques to characterise the tumour type and margin, specifically fluorescent-guided surgery, neuronavigation and intraoperative imaging as well as on more experimental techniques such as mass spectrometry-based diagnostics, Raman spectrometry and hyperspectral imaging. Based on our findings, all investigated methods had their advantages and limitations, guiding researchers towards the combined use of intraoperative imaging techniques. This can lead to an improved outcome in terms of extent of tumour resection and progression free survival while preserving neurological outcome of the patients.

20.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139473

RESUMEN

Physiological and pathological burdens that perturb endoplasmic reticulum homeostasis activate the unfolded protein response (UPR), a conserved cytosol-to-nucleus signaling pathway that aims to reinstate the vital biosynthetic and secretory capacity of the ER. Disrupted ER homeostasis, causing maladaptive UPR signaling, is an emerging trait of cancer cells. Maladaptive UPR sustains oncogene-driven reprogramming of proteostasis and metabolism and fosters proinflammatory pathways promoting tissue repair and protumorigenic immune responses. However, when cancer cells are exposed to conditions causing irreparable ER homeostasis, such as those elicited by anticancer therapies, the UPR switches from a survival to a cell death program. This lethal ER stress response can elicit immunogenic cell death (ICD), a form of cell death with proinflammatory traits favoring antitumor immune responses. How UPR-driven pathways transit from a protective to a killing modality with favorable immunogenic and proinflammatory output remains unresolved. Here, we discuss key aspects of the functional dichotomy of UPR in cancer cells and how this signal can be harnessed for therapeutic benefit in the context of ICD, especially from the aspect of inflammation aroused by the UPR.


Asunto(s)
Muerte Celular Inmunogénica , Neoplasias , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Neoplasias/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...