Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Sci Total Environ ; 888: 163888, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37164106

RESUMEN

Environmental risk assessment is generally based on atmospheric conditions for the modelling of chemical fate after entering the environment. However, during hydraulic fracturing, chemicals may be released deep underground. This study therefore focuses on the effects of high pressure and high temperature conditions on chemicals in flowback water to determine whether current environmental fate models need to be adapted in the context of downhole activities. Crushed shale and flowback water were mixed and exposed to different temperature (25-100 °C) and pressure (1-450 bar) conditions to investigate the effects they have on chemical fate. Samples were analysed using LC-HRMS based non-target screening. The results show that both high temperature and pressure conditions can impact the chemical fate of hydraulic fracturing related chemicals by increasing or decreasing concentrations via processes of transformation, sorption, degradation and/or dissolution. Furthermore, the degree and direction of change is chemical specific. The change is lower or equal to a factor of five, but for a few individual compounds the degree of change can exceed this factor of five. This suggests that environmental fate models based on surface conditions may be used for an approximation of chemical fate under downhole conditions by applying an additional factor of five to account for these uncertainties. More accurate insight into chemical fate under downhole conditions may be gained by studying a fluid of known chemical composition and an increased variability in temperature and pressure conditions including concentration, salinity and pH as variables.

3.
Chemosphere ; 307(Pt 1): 135684, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35850214

RESUMEN

Wastewater-based epidemiology (WBE) relies on the assessment and interpretation of levels of biomarkers in wastewater originating from a well-defined community. It has provided unique information on spatial and temporal trends of licit and illicit drug consumption, and has also the potential to give complementary information on human exposure to chemicals. Here, we focus on the accurate quantification of pesticide biomarkers (i.e., predominantly urinary metabolites) in influent wastewater at the ng L-1 level to be used for WBE. In the present study, an advanced analytical methodology has been developed based on ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), for the simultaneous determination of 11 specific human biomarkers of triazines, urea herbicides, pyrethroids and organophosphates in urban wastewater. The sample treatment consisted of solid-phase extraction using Oasis HLB cartridges. Direct injection of the samples was also tested for all compounds, as a simple and rapid way to determine these compounds without sample manipulation (i.e., minimizing potential analytical errors). However, if extraction recoveries are satisfactory, SPE is the preferred approach that allow reaching lower concertation levels. Six isotopically labelled internal standards were evaluated and used to correct for matrix effects. Due to the difficulties associated with this type of analysis, special emphasis has been placed on the analytical challenges encountered. The satisfactory validated methodology was applied to urban wastewater samples collected from different locations across Europe revealing the presence of 2,6-EA, 3,4-DCA, 3-PBA and 4-HSA i.e, metabolites of metolachlor-s, urea herbicides, pyrethroids and chlorpropham, respectively. Preliminary data reported in this paper illustrate the applicability of this analytical approach for assessing human exposure to pesticides through WBE.


Asunto(s)
Herbicidas , Drogas Ilícitas , Plaguicidas , Piretrinas , Contaminantes Químicos del Agua , Biomarcadores , Clorprofam , Cromatografía Líquida de Alta Presión/métodos , Herbicidas/análisis , Humanos , Drogas Ilícitas/análisis , Organofosfatos , Plaguicidas/análisis , Piretrinas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Triazinas/análisis , Urea , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 847: 157222, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901880

RESUMEN

Already in early 2000s, concerns have been growing in the EU about increasing use of cocaine and it is estimated that below 1 % of the population administer the drug by smoking crack cocaine. New available data suggests an increase in the use of crack cocaine and an increase in the number of crack cocaine users entering treatment has been reported in several European countries. Robust estimations of crack cocaine use are however not available yet. The use of crack cocaine has long been associated with severe adverse socio-economic conditions as well as mental health problems, such as suicide ideation and depression. The aim of this study was to assess spatial trends in population-normalized mass loads of crack cocaine biomarkers (i.e., anhydroecgonine and anhydroecgonine methyl ester) in 13 European cities in six countries (the Netherlands, Belgium, Ireland, Portugal, Spain and Italy). Furthermore, temporal trends over a five-year period were evaluated through the analysis of historic samples collected in the Netherlands. Finally, the stability of the crack cocaine biomarkers in wastewater was investigated through batch experiments. The samples were analyzed with a new developed and validated hydrophilic interaction liquid chromatography coupled to mass spectrometry method. Targeted crack cocaine biomarkers were found in all cities. Also, crack cocaine biomarker was detected in wastewater from 2017 to 2021 in the Netherlands, but no significance between the years were found. With respect to biomarker in-sample stability, AEME was found to be stable in wastewater. This study assessed crack cocaine use for the first time on a broad scale, both temporal and in cities across Europe, with wastewater-based epidemiology and it shows the importance of wastewater analysis to monitor community loads of crack cocaine use.


Asunto(s)
Cocaína , Cocaína Crack , Biomarcadores , Ciudades/epidemiología , Cocaína/análisis , Cocaína Crack/análisis , Humanos , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales
5.
Sci Total Environ ; 811: 152139, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34871677

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA) and amphetamine are commonly used psychoactive stimulants. Illegal manufacture of these substances, mainly located in the Netherlands and Belgium, generates large amounts of chemical waste which is disposed in the environment or released in sewer systems. Retrospective analysis of high-resolution mass spectrometry (HRMS) data was implemented to detect synthesis markers of MDMA and amphetamine production in wastewater samples. Specifically, suspect and non-target screening, combined with a prioritization approach based on similarity measures between detected features and mass loads of MDMA and amphetamine was implemented. Two hundred and thirty-five 24 h-composite wastewater samples collected from a treatment plant in the Netherlands between 2016 and 2018 were analyzed by liquid chromatography coupled to high-resolution mass spectrometry. Samples were initially separated into two groups (i.e., baseline consumption versus dumping) based on daily loads of MDMA and amphetamine. Significance testing and fold-changes were used to find differences between features in the two groups. Then, associations between peak areas of all features and MDMA or amphetamine loads were investigated across the whole time series using various measures (Euclidian distance, Pearson's correlation coefficient, Spearman's rank correlation coefficient, distance correlation and maximum information coefficient). This unsupervised and unbiased approach was used for prioritization of features and allowed the selection of 28 presumed markers of production of MDMA and amphetamine. These markers could potentially be used to detect dumps in sewer systems, help in determining the synthesis route and track down the waste in the environment.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Aguas Residuales , Anfetamina , Cromatografía Liquida , Estudios Retrospectivos , Detección de Abuso de Sustancias
6.
Environ Sci Process Impacts ; 23(12): 1997-2006, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34761249

RESUMEN

Infinite dilution partition coefficients, Kp,0, of a series of unbranched perfluoralkylacids, PFAAs with 3 to 8 CF2 units between water and commercially available weak anion exchange (WAX) and strong anion exchange (MAX) polymers, C18-modified silica, hydrophilic-lipophilic balance polymer (HLB), and Al2O3 sorbents were determined with self-packed columns using an HPLC-MS/MS setup. The anionic WAX sorbent shows a much higher adsorption affinity (about 450 fold) for PFBA than was observed for the applied hydrophobic sorbent HLB. Since the incremental value for each CF2 group is smaller when the electrostatic adsorption process is observed, the hydrophobic partition coefficient of HLB supersedes the electrostatic one of WAX at around PFTeDA. Adsorption of PFAAs to Al2O3 was weak and did not show a clear chain length dependency. A recently developed independent mode (IM) adsorption model is a more accurate model to combine the electrostatic and hydrophobic interaction terms. This model predicts the correct behaviour of especially short chain PFAAs in soil or sediment sorption experiments. Factors increasing sorption efficiency of well- and ill-defined single and multiple adsorbents towards PFAAs are discussed. The IM model provides a method to optimise sorption remediation strategies of PFAAs in contaminated waters and proposes a two-step strategy, a starting hydrophobic step followed by an electrostatic one to remove more efficiently the short chain PFAAs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Adsorción , Fluorocarburos/análisis , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
7.
Water Res ; 207: 117789, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731667

RESUMEN

Illicit drug use is complex, hidden and often highly stigmatized behaviour, which brings a vast challenge for drug surveillance systems. Drug consumption can be estimated by measuring human excretion products in untreated wastewater, known as wastewater-based epidemiology (WBE). Over the last decade, the application of wastewater-based epidemiology to monitor illicit drug loads increased and WBE is currently applied on a global scale. Studies from over the globe are evaluated with regard to their sampling method, analytical accuracy and consumption calculation, aiming to further reduce relevant uncertainties in order to make reliable comparisons on a global level. Only a limited number is identified as high-quality studies, so further standardization of the WBE approach for illicit drugs is desired especially with regard to the sampling methodology. Only a fraction of the reviewed papers explicitly reports uncertainty ranges for their consumption data. Studies which had the highest reliability are recently published, indicating an improvement in reporting WBE data. Until now, WBE has not been used in large parts of Africa, nor in the Middle East and Russia. An overview of consumption data across the continents on commonly studied drugs (cocaine, MDMA, amphetamine and methamphetamine) is provided. Overall, high consumption rates are confirmed in the US, especially for cocaine and methamphetamine, while relatively low illicit drug consumption is reported in Asia.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Humanos , Reproducibilidad de los Resultados , Detección de Abuso de Sustancias , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Process Impacts ; 23(8): 1158-1170, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259284

RESUMEN

Four crops with different edible plant parts (radish, lettuce, pea and maize) were grown in outdoor lysimeters on soil spiked with 13 perfluorinated alkyl acids (PFAAs) at 4 different levels. PFAA concentrations were measured in soil, soil pore water, and different plant parts at harvest. Edible part/soil concentration factors ranged over seven orders of magnitude and decreased strongly with increasing PFAA chain length, by a factor of 10 for each additional fluorinated carbon (nCF) for pea. Three processes were responsible for most of the variability. The first was sorption to soil; calculating whole plant concentration factors on the basis of concentration in pore water instead of soil reduced the variability from five orders of magnitude to two. Second, the journey of the PFAAs with the transpiration stream to the leaves was hindered by retention in the roots driven by sorption; root retention factors increased by a factor 1.7 for each nCF. Third, transfer of PFAAs from the leaves to the fruit via the phloem flow was also hindered - presumably by sorption; fruit/leaf concentration factors decreased by a factor 2.5 for each nCF. A simple mathematical model based on the above principles described the measured concentrations in roots, leaves, fruits and radish bulbs within a factor 4 in most cases. This indicates that the great diversity in PFAA transfer from soil to crops can be largely described with simple concepts for four markedly different species.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Productos Agrícolas , Fluorocarburos/análisis , Lactuca , Suelo , Contaminantes del Suelo/análisis
9.
Sci Total Environ ; 794: 148727, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323756

RESUMEN

There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either 'conventional' or 'green', as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the 'green' fluids are less harmful than the 'conventional' ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the 'green' and 'conventional' fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.


Asunto(s)
Fracking Hidráulico , Bioensayo , Cromatografía Liquida , Humanos , Contaminación del Agua
10.
Environ Int ; 153: 106540, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33838618

RESUMEN

The COVID-19 outbreak has forced countries to introduce severe restrictive measures to contain its spread. In particular, physical distancing and restriction of movement have had important consequences on human behaviour and potentially also on illicit drug use and supply. These changes can be associated with additional risks for users, in particular due to reduced access to prevention and harm reduction activities. Furthermore, there have been limitations in the amount of data about drug use which can be collected due to restrictions. To goal of this study was to obtain information about potential changes in illicit drug use impacted by COVID-19 restrictions. Wastewater samples were collected in seven cities in the Netherlands, Belgium, Spain and Italy at the beginning of lockdowns (March-May 2020). Using previously established and validated methods, levels of amphetamine (AMP), methamphetamine (METH), MDMA, benzoylecgonine (BE, the main metabolite of cocaine) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH, main metabolite of tetrahydrocannabinol (THC)) were measured and compared with findings from previous years. Important differences in levels of consumed drugs were observed across the considered countries. Whilst for some substances and locations, marked decreases in consumption could be observed (e.g., 50% decrease in MDMA levels compared to previous years). In some cases, similar or even higher levels compared to previous years could be found. Changes in weekly patterns were also observed, however these were not clearly defined for all locations and/or substances. Findings confirm that the current situation is highly heterogeneous and that it remains very difficult to explain and/or predict the effect that the present pandemic has on illicit drug use and availability. However, given the current difficulty in obtaining data due to restrictions, wastewater analysis can provide relevant information about the situation at the local level, which would be hard to obtain otherwise.


Asunto(s)
COVID-19 , Drogas Ilícitas , Trastornos Relacionados con Sustancias , Contaminantes Químicos del Agua , Bélgica , Ciudades , Control de Enfermedades Transmisibles , Humanos , Italia , Países Bajos , SARS-CoV-2 , España , Detección de Abuso de Sustancias , Trastornos Relacionados con Sustancias/epidemiología , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 777: 145914, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33677284

RESUMEN

WBE was applied to evaluate illicit drug (i.e. amphetamine, cocaine, MDMA and methamphetamine), alcohol and tobacco use in three Lithuanian cities in 2018 and 2019. Considerable concentrations of methamphetamine and MDMA were found in the three locations, suggesting a specific Lithuanian consumption pattern. Yet, unexpected high concentrations of amphetamine (>4 µg/L) were detected in two samples of Kaunas in 2018. Through the use of chiral analysis and non-target and suspect drug precursor compound screening, these extreme values were confirmed to be the result of direct disposal of amphetamine in the sewers. Furthermore, substantial alcohol use was measured in the three investigated catchment populations of Lithuania with almost 4 standard drinks/day/inhabitant aged 15+ on average in 2019. For tobacco, an average of 5.6 cigarettes/day/inhabitant aged 15+ in 2019 was reported with large discrepancies between WBE figures and sales data, potentially highlighting illegal trade of tobacco products.


Asunto(s)
Trastornos Relacionados con Sustancias , Contaminantes Químicos del Agua , Adolescente , Ciudades , Humanos , Lituania/epidemiología , Detección de Abuso de Sustancias , Uso de Tabaco , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
12.
J Cheminform ; 13(1): 1, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407901

RESUMEN

Mass spectrometry based non-target analysis is increasingly adopted in environmental sciences to screen and identify numerous chemicals simultaneously in highly complex samples. However, current data processing software either lack functionality for environmental sciences, solve only part of the workflow, are not openly available and/or are restricted in input data formats. In this paper we present patRoon, a new R based open-source software platform, which provides comprehensive, fully tailored and straightforward non-target analysis workflows. This platform makes the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) software tools under a consistent interface. In addition, patRoon offers various functionality and strategies to simplify and perform automated processing of complex (environmental) data effectively. patRoon implements several effective optimization strategies to significantly reduce computational times. The ability of patRoon to perform time-efficient and automated non-target data annotation of environmental samples is demonstrated with a simple and reproducible workflow using open-access data of spiked samples from a drinking water treatment plant study. In addition, the ability to easily use, combine and evaluate different algorithms was demonstrated for three commonly used feature finding algorithms. This article, combined with already published works, demonstrate that patRoon helps make comprehensive (environmental) non-target analysis readily accessible to a wider community of researchers.

13.
Environ Toxicol Pharmacol ; 82: 103549, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33246138

RESUMEN

Routine water quality monitoring is generally performed with chemical analyses of grab samples, which has major limitations. First, snapshot samples will not give a good representation of the water quality. Second, it is not sufficient to analyze only a limited number of (priority) pollutants. These limitations can be circumvented by an alternative environmental risk assessment that combines time-integrated passive sampling (PS) with effect-based methods. This study aimed to select which of three polar PS devices was best suited for effect-based monitoring strategies. In the first part of this study, Speedisk, SorbiCell and POCIS polar PS devices were compared by simultaneous deployment at five sites. Chemical analyses of 108 moderately polar compounds (-1.82 < log D < 6.28) revealed that highest number of compounds, with the widest range of log KOW, log D and pKa, were detected in extracts of POCIS, followed by Speedisk. SorbiCell samplers accumulated the lowest numbers and concentrations of compounds, so they were not further investigated. In a follow-up study, bioassay responses were compared in extracts of POCIS and Speedisk devices deployed at eight sites. The passive sampler extracts were subjected to bioassays for non-specific toxicity, endocrine disruption, and antibiotics activities. More frequent and higher responses were induced by POCIS extracts, leading to more exceedances of effect-based trigger values for environmental risks. As POCIS outperformed Speedisk, it is better suited as PS device targeting polar compounds for semi-quantitative effect-based water quality monitoring.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Bioensayo , Monitoreo del Ambiente/métodos , Agua Dulce/análisis , Países Bajos
15.
Chemosphere ; 260: 127608, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32683016

RESUMEN

This study explores whether mechanistic understanding of plant uptake of perfluoroalkyl acids (PFAAs) derived from hydroponic experiments can be applied to soil systems. Lettuces (Lactuca sativa) were grown in outdoor lysimeters in soil spiked with 4 different concentrations of 13 PFAAs. PFAA concentrations were measured in soil, soil pore water, lettuce roots, and foliage. The PFAA uptake by the lettuce was compared with uptake measured in a hydroponic study. The foliage:pore water concentration ratios in the lysimeter were similar to the foliage:water concentration ratios from the hydroponic experiment. In contrast, the root:pore water concentration ratios in the lysimeter were 1-2 orders of magnitude lower than in the hydroponic study for PFAAs with 6 or more perfluorinated carbons. Hence, hydroponic studies can be expected to provide a good quantitative measure of PFAA transfer from soil to foliage if one accounts for soil:pore water partitioning and differences in transpiration rate. However, hydroponic studies will be of little value for estimating PFAA transfer from soil to roots because sorption to the root surface is greatly enhanced under hydroponic conditions.


Asunto(s)
Fluorocarburos/metabolismo , Lactuca/metabolismo , Contaminantes del Suelo/metabolismo , Fluorocarburos/análisis , Hidroponía , Suelo , Contaminantes del Suelo/análisis , Agua
16.
J Environ Manage ; 271: 110972, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32579525

RESUMEN

Cooling towers are responsible for a large part of the industrial fresh water withdrawal, and the reuse of cooling tower water (CTW) effluents can strongly lower industrial fresh water footprints. CTW requires desalination prior to being reused, but various CTW components, such as total organic carbon (TOC), conditioning chemicals and total suspended solids (TSS) hamper physico-chemical desalination technologies and need to be removed from the CTW. A cost-efficient and robust pre-treatment is thus required, which can be provided by constructed wetlands (CWs). The present study is the first study that determined the CTW pre-treatment efficiency of hybrid-CWs and the impact of winter season and biocides in the CTW on the pre-treatment efficiency. The most efficient CW flow type and dominant removal mechanisms for CW components hampering physico-chemical desalination were determined. Subsurface flow CWs removed PO43-, TSS and TOC as a result of adsorption and filtration. Vertical subsurface flow CWs (VSSF-CW) excelled in the removal of benzotriazole as a result of aerobic biodegradation. Horizontal subsurface flow CWs (HSSF-CW) allowed the denitrification of NO3- due to their anaerobic conditions. Open water CWs (OW-CWs) did not contribute to the removal of components that hamper physico-chemical desalination technologies, but do provide water storage options and habitat. The biological removal processes in the different CW flow types were negatively impacted by the winter season, but were not impacted by concentrations of the biocides glutaraldehyde and DBNPA that are relevant in practice. For optimal pre-treatment, a hybrid-CW, consisting of an initial VSSF-CW followed by an OW-CW and HSSF-CW is recommended. Future research should focus on integrating the hybrid-CW with a desalination technology, e.g. reverse osmosis, electrodialysis or capacitive ionization, to produce water that meets the requirements for use as cooling water and allow the reuse of CTW in the cooling tower itself.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Purificación del Agua , Eliminación de Residuos Líquidos , Aguas Residuales , Agua , Humedales
17.
Environ Sci Process Impacts ; 22(5): 1266-1286, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32248210

RESUMEN

At low surfactant concentrations often non-linear sorption processes are observed when natural adsorbents like sediment or soil are involved. This sorption process is often explained by a Dual-Model (DM) model, which assumes sorption to an adsorbent to be based on a combined ionic-polar and non-polar sorption interaction term. An Independent-Mode (IM) model, however, could treat surfactant sorption as two independent sorption processes to which the non-polar and ionic-polar features of the surfactant molecule contribute differently. For both models the overall exact partition coefficient, K, and its corresponding total standard free enthalpy of adsorption, ΔsG, are derived. We tested the outcome of both models against multiple published experimental sorption data sets by, (i) varying the organic carbon fraction, (ii) constructing sorption and partition isotherms over different concentration ranges, (iii) removing the organic carbon fraction, (iv) applying different types of mixtures of surfactants, and (v) explaining sorption hysteresis in desorption studies based on either continuous and successive washing steps. It turned out that only the IM model was able to explain the reported sorption phenomena. We also show that when one interaction is dominating, e.g. non-polar over ionic-polar, the ΔsG of the IM model can be approximated by the sum of the different ΔsG0 values, the ΔsG of the DM model. The exact partition coefficient, Kp(Cw) (L kg-1) = dCs (mmol kg-1)/dCw (mmol L-1), is turning each sorption isotherm into a partition isotherm that provides the Kp values required in environmental risk assessment models.


Asunto(s)
Contaminantes del Suelo , Tensoactivos , Adsorción , Sedimentos Geológicos , Suelo
18.
Water Res ; 175: 115653, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208173

RESUMEN

Wastewater-based epidemiology (WBE) was applied for the first time in seven cities across Europe with the aim of estimating quinolones consumption via the analysis of human urinary metabolites in wastewater. This report is also the first pan-European study focussed on the enantiomeric profiling of chiral quinolones in wastewater. By considering loads of (fluoro)quinolones in wastewater within the context of human stereoselective metabolism, we identified cities in Southern Europe characterised by both high usage and direct disposal of unused ofloxacin. In Northern European cities, S-(-)-ofloxacin loads were predominant with respect to R-(+)-ofloxacin. Much more potent, enantiomerically pure S-(-)-ofloxacin was detected in wastewaters from Southern European cities, reflecting consumption of the enantiomerically pure antibiotic. Nalidixic acid, norfloxacin and lomefloxacin were detected in wastewater even though they were not prescribed according to official prescription data. S,S-(-)-moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate were detected in wastewater due to metabolism of moxifloxacin. For the first time, average population-normalised ulifloxacin loads of 22.3 and 1.5 mg day-1 1000 people-1 were reported for Milan and Castellón as a result of prulifloxacin metabolism. Enrichment of flumequine with first-eluting enantiomer in all the samples indicated animal metabolism rather than its direct disposal. Fluoroquinolone loads were compared with qnrS gene encoding quinolone resistance to correlate usage of fluoroquinolone and prevalence of resistance. The highest daily loads of the qnrS gene in Milan corresponded with the highest total quinolone load in Milan proving the hypothesis that higher usage of quinolones is linked with higher prevalence of quinolone resistance genes. Utrecht, with the lowest quinolones usage (low daily loads) had also one of the lowest daily loads of the qnrS gene. However, a similar trend was not observed in Oslo nor Bristol where higher qnrS gene loads were observed despite low quinolone usage.


Asunto(s)
Quinolonas , Aguas Residuales , Animales , Antibacterianos , Ciudades , Farmacorresistencia Bacteriana , Europa (Continente) , Humanos
19.
Chemosphere ; 242: 125102, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31669985

RESUMEN

Exposure history and adaptation of the inoculum to chemicals have been shown to influence the outcome of ready biodegradability tests. However, there is a lack of information about the mechanisms involved in microbial adaptation and the implication thereof for the tests. In the present study, we investigated the impact of a long-term exposure to N-methylpiperazine (NMP) and 4-chloroaniline (4CA) of an activated sludge microbial community using chemostat systems. The objective was to characterize the influence of adaptation to the chemicals on an enhanced biodegradation testing, following the OECD 310 guideline. Cultures were used to inoculate the enhanced biodegradability tests, in batch, before and after exposure to each chemical independently in chemostat culture. Composition and diversity of the microbial communities were characterised by 16s rRNA gene amplicon sequencing. Using freshly sampled activated sludge, NMP was not degraded within the 28 d frame of the test while 4CA was completely eliminated. However, after one month of exposure, the community exposed to NMP was adapted and could completely degrade it. This result was in complete contrast with that from the culture exposed for 3 months to 4CA. Long term incubation in the chemostat system led to a progressive loss of the initial biodegradation capacity of the community, as a consequence of the loss of key degrading microorganisms. This study highlights the potential of chemostat systems to induce adaptation to a specific chemical, ultimately resulting in its biodegradation. At the same time, one should be critical of these observations as the dynamics of a microbial community are difficult to maintain in chemostat, as the loss of 4CA biodegradation capacity demonstrates.


Asunto(s)
Compuestos de Anilina/metabolismo , Biodegradación Ambiental , Microbiota/efectos de los fármacos , Piperazina/metabolismo , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S , Factores de Tiempo
20.
J Hazard Mater ; 384: 121314, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31581006

RESUMEN

The reuse of discharged cooling tower water (CTW) in the cooling tower itself could reduce fresh water intake and help mitigating fresh water scarcity problems. However, this requires desalination prior to its reuse, and hindering fractions, such as conditioning chemicals, should be removed before desalination to obtain a higher desalination efficiency. Constructed wetlands (CWs) can provide such a pre-treatment. In this study, the mechanisms underlying the removal of conditioning chemical benzotriazole (BTA) in CWs was studied using an innovative approach of differently designed pilot-scale CWs combined with batch removal experiments with substrate from these CWs. By performing these combined experiments, it was possible to determine the optimal CW design for BTA removal and the most relevant BTA removal processes in CWs. Adsorption yielded the highest contribution, and the difference in removal between different CW types was linked to their capability to aerobically biodegrade BTA. This knowledge on the main removal mechanisms for BTA allows for a CW design tailored for BTA removal. In addition, the outcomes of this research show that performing batch experiments with CW substrate allows one to determine the relevant removal mechanisms for a given compound which results in a better understanding of CW removal processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...