Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Vaccine ; 42(24): 126250, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39226789

RESUMEN

Lung transplant recipients (LTRs) are particularly at risk of developing severe coronavirus disease-2019 (COVID-19), but are also difficult to protect by vaccination due to their immunocompromised state. Here, we investigated the immunogenicity of mRNA-based COVID-19 vaccines in LTRs who had a prior natural SARS-CoV-2 infection. At a median of 184 days after SARS-CoV-2 infection, LTRs were vaccinated twice with the mRNA-1273 COVID-19 vaccine, with a 28-day interval. Blood samples were obtained pre-vaccination, 28 days after the first dose, and 28 days and 6 months after the second dose. Spike (S-) and nucleocapsid (N-) specific antibodies were measured, as well as neutralization of the ancestral and Omicron BA.5 variant. S-specific T cell responses were evaluated using IFN-γ ELISpot,IGRA, and activation markers by flow cytometry. Phenotyping of T cells was performed by using high-resolution spectral flow cytometry. Most LTRs with prior infection had detectable S-specific antibodies and T cells at baseline. After the first vaccination, S-specific antibody levels increased significantly; an additional increase was observed after the second vaccination. N-specific antibodies decreased during the study period, indicative of the fact that no further breakthrough infections occurred. An increase in IFN-γ producing T cells was observed after the first vaccination, but no additional boost could be detected after the second vaccination. Antibody levels and virus-specific T cell responses remained significantly higher compared to pre-vaccination levels at 6 months post-vaccination, indicating an additive and durable effect of vaccination after infection in LTRs. Neutralizing antibodies were detected against the ancestral strain and retained cross-reactivity with Omicron BA.5, albeit at lower levels. Moreover, the quantity and phenotype of SARS-CoV-2 spike-specific T cells were similar in LTRs compared to controls with hybrid immunity. In conclusion, mRNA-based COVID-19 vaccines are immunogenic in LTRs with prior immunity, and antibody and T cell responses are durable up to 6 months post-vaccination.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Trasplante de Pulmón , SARS-CoV-2 , Linfocitos T , Receptores de Trasplantes , Humanos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Linfocitos T/inmunología , SARS-CoV-2/inmunología , Persona de Mediana Edad , Masculino , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Anciano , Vacunación , Inmunogenicidad Vacunal
2.
Euro Surveill ; 29(38)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301741

RESUMEN

In response to the mpox outbreak in 2022 and 2023, widespread vaccination with modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as JYNNEOS or Imvanex) was initiated. Here, we demonstrate that orthopoxvirus-specific binding and MVA-neutralising antibodies waned to undetectable levels 1 year post vaccination in at-risk individuals who received two doses of MVA-BN administered subcutaneously with an interval of 4 weeks, without prior smallpox or mpox vaccination. Continuous surveillance is essential to understand the impact of declining antibody levels.


Asunto(s)
Anticuerpos Antivirales , Orthopoxvirus , Vacunación , Humanos , Anticuerpos Antivirales/sangre , Orthopoxvirus/inmunología , Países Bajos/epidemiología , Masculino , Adulto , Femenino , Vacuna contra Viruela/administración & dosificación , Vacuna contra Viruela/inmunología , Persona de Mediana Edad , Anticuerpos Neutralizantes/sangre , Brotes de Enfermedades/prevención & control , Viruela/prevención & control , Infecciones por Poxviridae/prevención & control , Mpox/prevención & control , Virus Vaccinia/inmunología , Adulto Joven , Adolescente
3.
J Infect ; 89(4): 106246, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127451

RESUMEN

Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. Here, we characterized the RBD-specific memory B cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, in direct comparison with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one month after a fourth dose with a monovalent or a BA.1 or BA.5 bivalent vaccine. Serum neutralizing antibodies (NAb) were quantified, as well as RBD-specific Bmem with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. Both bivalent vaccines elicited higher NAb titers against Omicron subvariants compared to the monovalent vaccine. Following either vaccine type, recipients had slightly increased WH1 RBD-specific Bmem numbers. Both bivalent vaccines significantly increased WH1 RBD-specific Bmem binding of all Omicron subvariants tested by flow cytometry, while recognition of Omicron subvariants was not enhanced following monovalent vaccination. IgG1+ Bmem dominated the response, with substantial IgG4+ Bmem only detected in recipients of an mRNA vaccine for their primary dose. Thus, Omicron-based bivalent vaccines can significantly boost NAb and Bmem specific for ancestral WH1 and Omicron variants and improve recognition of descendent subvariants by pre-existing, WH1-specific Bmem beyond that of a monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants and potentially protect against severe disease. ONE-SENTENCE SUMMARY: Omicron BA.1 and BA.5 bivalent COVID-19 boosters, used as a fourth dose, increase RBD-specific Bmem cross-recognition of Omicron subvariants, both those encoded by the vaccines and antigenically distinct subvariants, further than a monovalent booster.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Reacciones Cruzadas , Inmunización Secundaria , Células B de Memoria , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Células B de Memoria/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Persona de Mediana Edad , Masculino , Femenino , Personal de Salud
4.
Transplantation ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902860

RESUMEN

BACKGROUND: Insight into cellular immune responses to COVID-19 vaccinations is crucial for optimizing booster programs in kidney transplant recipients (KTRs). METHODS: In an immunologic substudy of a multicenter randomized controlled trial (NCT05030974) investigating different repeated vaccination strategies in KTR who showed poor serological responses after 2 or 3 doses of an messenger RNA (mRNA)-based vaccine, we compared SARS-CoV-2-specific interleukin-21 memory T-cell and B-cell responses by enzyme-linked immunosorbent spot (ELISpot) assays and serum IgG antibody levels. Patients were randomized to receive: a single dose of mRNA-1273 (100 µg, n = 25), a double dose of mRNA-1273 (2 × 100 µg, n = 25), or a single dose of adenovirus type 26 encoding the SARS-CoV-2 spike glycoprotein (Ad26.COV2.S) (n = 25). In parallel, we also examined responses in 50 KTR receiving 100 µg mRNA-1273, randomized to continue (n = 25) or discontinue (n = 25) mycophenolate mofetil/mycophenolic acid. As a reference, the data were compared with KTR who received 2 primary mRNA-1273 vaccinations. RESULTS: Repeated vaccination increased the seroconversion rate from 21% to 66% in all patients, which was strongly associated with enhanced levels of SARS-CoV-2-specific interleukin-21 memory T cells (odd ratio, 3.84 [1.89-7.78]; P < 0.001) and B cells (odd ratio, 35.93 [6.94-186.04]; P < 0.001). There were no significant differences observed in these responses among various vaccination strategies. In contrast to KTR vaccinated with 2 primary vaccinations, the number of antigen-specific memory B cells demonstrated potential for classifying seroconversion after repeated vaccination (area under the curve, 0.64; 95% confidence interval, 0.37-0.90; P = 0.26 and area under the curve, 0.95; confidence interval, 0.87-0.97; P < 0.0001, respectively). CONCLUSIONS: Our study emphasizes the importance of virus-specific memory T- and B-cell responses for comprehensive understanding of COVID-19 vaccine efficacy among KTR.

5.
Int J Infect Dis ; 146: 107132, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942168

RESUMEN

OBJECTIVES: The 2022 mpox epidemic reached a peak in Belgium and the rest of Europe in July 2022, after which it unexpectedly subsided. This study investigates epidemiological, behavioral, and immunological factors behind the waning of the epidemic in Belgium. METHODS: We investigated temporal evolutions in the characteristics and behavior of mpox patients using national surveillance data and data from a prospective registry of mpox patients in the Institute of Tropical Medicine (Antwerp). We studied behavioral changes in the population at risk using a survey among HIV-preexposure prophylaxis (PrEP) users. We determined the seroprevalence of anti-orthopoxvirus antibodies among HIV-PrEP users across four-time points in 2022. RESULTS: Mpox patients diagnosed at the end of the epidemic had less sexual risk behavior compared to those diagnosed earlier: they engaged less in sex at mass events, had fewer sexual partners, and were less likely to belong to the sexual network's central group. Among HIV-PrEP users there were no notable changes in sexual behavior. Anti-orthopoxvirus seroprevalence did not notably increase before the start of national vaccination campaigns. CONCLUSION: The observed changes in group immunity and behavior in the population at greater risk of exposure to mpox seem unable to explain the waning of the mpox epidemic. A change in the profile of mpox patients might have contributed to the decline in cases.


Asunto(s)
Infecciones por VIH , Conducta Sexual , Humanos , Bélgica/epidemiología , Estudios Seroepidemiológicos , Masculino , Adulto , Infecciones por VIH/epidemiología , Persona de Mediana Edad , Femenino , Profilaxis Pre-Exposición , Estudios Prospectivos , Asunción de Riesgos , Anticuerpos Antivirales/sangre
7.
Cell Mol Life Sci ; 81(1): 267, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884678

RESUMEN

Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein. For the detection of nAbs directed to the glycoprotein (G), ciliated epithelial cells expressing the cellular receptor CX3CR1 are required, but generation of primary cell cultures is expensive and labor-intensive. Here, we developed a high-throughput neutralization assay based on the interaction between clinically relevant HRSV grown on primary cells with ciliated epithelial cells, and validated this assay using a panel of infant sera. To develop the high-throughput neutralization assay, we established a culture of differentiated apical-out airway organoids (Ap-O AO). CX3CR1 expression was confirmed, and both F- and G-specific monoclonal antibodies neutralized HRSV in the Ap-O AO. In a side-by-side neutralization assay on Vero cells and Ap-O AO, neutralizing antibody levels in sera from 125 infants correlated well, although titers on Ap-O AO were consistently lower. We speculate that these lower titers might be an actual reflection of the neutralizing antibody capacity in vivo. The organoid-based neutralization assay described here holds promise for further characterization of correlates of protection against HRSV disease.


Asunto(s)
Anticuerpos Neutralizantes , Receptor 1 de Quimiocinas CX3C , Pruebas de Neutralización , Organoides , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Virus Sincitial Respiratorio Humano/inmunología , Anticuerpos Neutralizantes/inmunología , Organoides/metabolismo , Organoides/inmunología , Organoides/virología , Organoides/citología , Animales , Pruebas de Neutralización/métodos , Chlorocebus aethiops , Células Vero , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/inmunología , Anticuerpos Antivirales/inmunología , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/metabolismo , Lactante , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Anticuerpos Monoclonales/inmunología
8.
NPJ Vaccines ; 9(1): 93, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806532

RESUMEN

Healthy individuals with hybrid immunity, due to a SARS-CoV-2 infection prior to first vaccination, have stronger immune responses compared to those who were exclusively vaccinated. However, little is known about the characteristics of antibody, B- and T-cell responses in kidney disease patients with hybrid immunity. Here, we explored differences between kidney disease patients and controls with hybrid immunity after asymptomatic or mild coronavirus disease-2019 (COVID-19). We studied the kinetics, magnitude, breadth and phenotype of SARS-CoV-2-specific immune responses against primary mRNA-1273 vaccination in patients with chronic kidney disease or on dialysis, kidney transplant recipients, and controls with hybrid immunity. Although vaccination alone is less immunogenic in kidney disease patients, mRNA-1273 induced a robust immune response in patients with prior SARS-CoV-2 infection. In contrast, kidney disease patients with hybrid immunity develop SARS-CoV-2 antibody, B- and T-cell responses that are equally strong or stronger than controls. Phenotypic analysis showed that Spike (S)-specific B-cells varied between groups in lymph node-homing and memory phenotypes, yet S-specific T-cell responses were phenotypically consistent across groups. The heterogeneity amongst immune responses in hybrid immune kidney patients warrants further studies in larger cohorts to unravel markers of long-term protection that can be used for the design of targeted vaccine regimens.

9.
Front Immunol ; 15: 1390022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698851

RESUMEN

Purpose: Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods: This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results: After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion: Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Masculino , Femenino , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Adulto , Persona de Mediana Edad , Vacuna nCoV-2019 mRNA-1273/inmunología , Estudios de Seguimiento , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Estudios Prospectivos , Linfocitos T/inmunología , Adulto Joven , Vacunación , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Síndromes de Inmunodeficiencia/inmunología , Adolescente
10.
AIDS ; 38(9): 1355-1365, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788210

RESUMEN

OBJECTIVE: We evaluated the immunogenicity of a bivalent BA.1 COVID-19 booster vaccine in people with HIV (PWH). DESIGN: Prospective observational cohort study. METHODS: PWH aged ≥45 years received Wuhan-BA.1 mRNA-1273.214 and those <45 years Wuhan-BA.1 BNT162b2. Participants were propensity score-matched 1 : 2 to people without HIV (non-PWH) by age, primary vaccine platform (mRNA-based or vector-based), number of prior COVID-19 boosters and SARS-CoV-2 infections, and spike (S1)-specific antibodies on the day of booster administration. The primary endpoint was the geometric mean ratio (GMR) of ancestral S1-specific antibodies from day 0 to 28 in PWH compared to non-PWH. Secondary endpoints included humoral responses, T-cell responses and cytokine responses up to 180 days post-vaccination. RESULTS: Forty PWH received mRNA-1273.214 ( N  = 35) or BNT162b2 ( N  = 5) following mRNA-based ( N  = 29) or vector-based ( N  = 11) primary vaccination. PWH were predominantly male (87% vs. 26% of non-PWH) and median 57 years [interquartile range (IQR) 53-59]. Their median CD4 + T-cell count was 775 (IQR 511-965) and the plasma HIV-RNA load was <50 copies/ml in 39/40. The GMR of S1-specific antibodies by 28 days post-vaccination was comparable between PWH [4.48, 95% confidence interval (CI) 3.24-6.19] and non-PWH (4.07, 95% CI 3.42-4.83). S1-specific antibody responses were comparable between PWH and non-PWH up to 180 days, and T-cell responses up to 90 days post-vaccination. Interferon-γ, interleukin (IL)-2, and IL-4 cytokine concentrations increased 28 days post-vaccination in PWH. CONCLUSION: A bivalent BA.1 booster vaccine was immunogenic in well treated PWH, eliciting comparable humoral responses to non-PWH. However, T-cell responses waned faster after 90 days in PWH compared to non-PWH.


Asunto(s)
Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Infecciones por VIH , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , Masculino , Persona de Mediana Edad , Femenino , Estudios Prospectivos , Infecciones por VIH/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Países Bajos , Adulto , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Citocinas/inmunología , Anciano
11.
Nat Commun ; 15(1): 4224, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762522

RESUMEN

Waning antibody responses after COVID-19 vaccination combined with the emergence of the SARS-CoV-2 Omicron lineage led to reduced vaccine effectiveness. As a countermeasure, bivalent mRNA-based booster vaccines encoding the ancestral spike protein in combination with that of Omicron BA.1 or BA.5 were introduced. Since then, different BA.2-descendent lineages have become dominant, such as XBB.1.5, JN.1, or EG.5.1. Here, we report post-hoc analyses of data from the SWITCH-ON study, assessing how different COVID-19 priming regimens affect the immunogenicity of bivalent booster vaccinations and breakthrough infections (NCT05471440). BA.1 and BA.5 bivalent vaccines boosted neutralizing antibodies and T-cells up to 3 months after boost; however, cross-neutralization of XBB.1.5 was poor. Interestingly, different combinations of prime-boost regimens induced divergent responses: participants primed with Ad26.COV2.S developed lower binding antibody levels after bivalent boost while neutralization and T-cell responses were similar to mRNA-based primed participants. In contrast, the breadth of neutralization was higher in mRNA-primed and bivalent BA.5 boosted participants. Combined, our data further support the current use of monovalent vaccines based on circulating strains when vaccinating risk groups, as recently recommended by the WHO. We emphasize the importance of the continuous assessment of immune responses targeting circulating variants to guide future COVID-19 vaccination policies.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Masculino , Adulto , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Vacunación
12.
Euro Surveill ; 29(17)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38666400

RESUMEN

BackgroundFollowing the 2022-2023 mpox outbreak, crucial knowledge gaps exist regarding orthopoxvirus-specific immunity in risk groups and its impact on future outbreaks.AimWe combined cross-sectional seroprevalence studies in two cities in the Netherlands with mathematical modelling to evaluate scenarios of future mpox outbreaks among men who have sex with men (MSM).MethodsSerum samples were obtained from 1,065 MSM attending Centres for Sexual Health (CSH) in Rotterdam or Amsterdam following the peak of the Dutch mpox outbreak and the introduction of vaccination. For MSM visiting the Rotterdam CSH, sera were linked to epidemiological and vaccination data. An in-house developed ELISA was used to detect vaccinia virus (VACV)-specific IgG. These observations were combined with published data on serial interval and vaccine effectiveness to inform a stochastic transmission model that estimates the risk of future mpox outbreaks.ResultsThe seroprevalence of VACV-specific antibodies was 45.4% and 47.1% in Rotterdam and Amsterdam, respectively. Transmission modelling showed that the impact of risk group vaccination on the original outbreak was likely small. However, assuming different scenarios, the number of mpox cases in a future outbreak would be markedly reduced because of vaccination. Simultaneously, the current level of immunity alone may not prevent future outbreaks. Maintaining a short time-to-diagnosis is a key component of any strategy to prevent new outbreaks.ConclusionOur findings indicate a reduced likelihood of large future mpox outbreaks among MSM in the Netherlands under current conditions, but emphasise the importance of maintaining population immunity, diagnostic capacities and disease awareness.


Asunto(s)
Brotes de Enfermedades , Homosexualidad Masculina , Humanos , Masculino , Países Bajos/epidemiología , Estudios Seroepidemiológicos , Estudios Transversales , Homosexualidad Masculina/estadística & datos numéricos , Adulto , Persona de Mediana Edad , Vaccinia/epidemiología , Anticuerpos Antivirales/sangre , Vacunación/estadística & datos numéricos , Adulto Joven , Modelos Teóricos , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G/sangre
13.
J Virol ; 98(3): e0185023, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38415596

RESUMEN

Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.


Asunto(s)
Modelos Animales de Enfermedad , Virus del Moquillo Canino , Hurones , Sarampión , Infecciones por Morbillivirus , Animales , Perros , Humanos , Moquillo/virología , Virus del Moquillo Canino/genética , Sarampión/patología , Virus del Sarampión/genética , Morbillivirus/genética , Infecciones por Morbillivirus/patología , Primates , Viremia
14.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38329336

RESUMEN

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Asunto(s)
Adenosina Monofosfato , Alanina , Virus del Sarampión , Sarampión , Panencefalitis Esclerosante Subaguda , Proteínas Virales , Preescolar , Humanos , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/administración & dosificación , Alanina/análogos & derivados , Alanina/uso terapéutico , Autopsia , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Progresión de la Enfermedad , Resultado Fatal , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sarampión/complicaciones , Sarampión/tratamiento farmacológico , Sarampión/virología , Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Proteínas Mutantes/análisis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Calidad de Vida , ARN Viral/análisis , ARN Viral/genética , Panencefalitis Esclerosante Subaguda/tratamiento farmacológico , Panencefalitis Esclerosante Subaguda/etiología , Panencefalitis Esclerosante Subaguda/virología , Proteínas Virales/análisis , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
J Infect Dis ; 229(1): 137-146, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37675756

RESUMEN

BACKGROUND: Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. METHODS: We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. RESULTS: Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. CONCLUSIONS: Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/prevención & control , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus , Unión Proteica
18.
Vaccine ; 41(43): 6495-6504, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37726181

RESUMEN

Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Fiebre Chikungunya/prevención & control , Epítopos de Linfocito T , Vacuna Antisarampión , Virus del Sarampión
19.
Pathogens ; 12(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37513709

RESUMEN

Neutralizing antibodies are considered a correlate of protection against SARS-CoV-2 infection and severe COVID-19, although they are not the only contributing factor to immunity: T-cell responses are considered important in protecting against severe COVID-19 and contributing to the success of vaccination effort. T-cell responses after vaccination largely mirror those of natural infection in magnitude and functional capacity, but not in breadth, as T-cells induced by vaccination exclusively target the surface spike glycoprotein. T-cell responses offer a long-lived line of defense and, unlike humoral responses, largely retain reactivity against the SARS-CoV-2 variants. Given the increasingly recognized role of T-cell responses in protection against severe COVID-19, the circulation of SARS-CoV-2 variants, and the potential implementation of novel vaccines, it becomes imperative to continuously monitor T-cell responses. In addition to "classical" T-cell assays requiring the isolation of peripheral blood mononuclear cells, simple whole-blood-based interferon-γ release assays have a potential role in routine T-cell response monitoring. These assays could be particularly useful for immunocompromised people and other clinically vulnerable populations, where interactions between cellular and humoral immunity are complex. As we continue to live alongside COVID-19, the importance of considering immunity as a whole, incorporating both humoral and cellular responses, is crucial.

20.
mSphere ; 8(4): e0014423, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37314205

RESUMEN

Raccoons are naturally susceptible to canine distemper virus (CDV) infection and can be a potential source of spill-over events. CDV is a highly contagious morbillivirus that infects multiple species of carnivores and omnivores, resulting in severe and often fatal disease. Here, we used a recombinant CDV (rCDV) based on a full-genome sequence detected in a naturally infected raccoon to perform pathogenesis studies in raccoons. Five raccoons were inoculated intratracheally with a recombinant virus engineered to express a fluorescent reporter protein, and extensive virological, serological, histological, and immunohistochemical assessments were performed at different time points post inoculation. rCDV-infected white blood cells were detected as early as 4 days post inoculation (dpi). Raccoon necropsies at 6 and 8 dpi revealed replication in the lymphoid tissues, preceding spread into peripheral tissues observed during necropsies at 21 dpi. Whereas lymphocytes, and to a lesser extent myeloid cells, were the main target cells of CDV at early time points, CDV additionally targeted epithelia at 21 dpi. At this later time point, CDV-infected cells were observed throughout the host. We observed lymphopenia and lymphocyte depletion from lymphoid tissues after CDV infection, in the absence of detectable CDV neutralizing antibodies and an impaired ability to clear CDV, indicating that the animals were severely immunosuppressed. The use of a wild-type-based recombinant virus in a natural host species infection study allowed systematic and sensitive assessment of antigen detection by immunohistochemistry, enabling further comparative pathology studies of CDV infection in different species. IMPORTANCE Expansion of the human interface supports increased interactions between humans and peridomestic species like raccoons. Raccoons are highly susceptible to canine distemper virus (CDV) and are considered an important target species. Spill-over events are increasingly likely, potentially resulting in fatal CDV infections in domestic and free ranging carnivores. CDV also poses a threat for (non-human) primates, as massive outbreaks in macaque colonies were reported. CDV pathogenesis was studied by experimental inoculation of several species, but pathogenesis in raccoons was not properly studied. Recently, we generated a recombinant virus based on a full-genome sequence detected in a naturally infected raccoon. Here, we studied CDV pathogenesis in its natural host species and show that distemper completely overwhelms the immune system and spreads to virtually all tissues, including the central nervous system. Despite this, raccoons survived up to 21 d post inoculation with long-term shedding, supporting an important role of raccoons as host species for CDV.


Asunto(s)
Virus del Moquillo Canino , Linfopenia , Animales , Humanos , Virus del Moquillo Canino/genética , Mapaches , Viremia/veterinaria , Brotes de Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA