Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 55: 37-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22926193

RESUMEN

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders. Pathologically, it is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although most occurrences have an unknown cause, several gene mutations have been linked to familial forms of PD. The discovery of some of the proteins encoded by these genes, including Parkin, PINK1 and DJ-1, at the mitochondria offered a new perspective on the involvement of mitochondria in PD. Specifically, these proteins are thought to be involved in the maintenance of a healthy pool of mitochondria by regulating their turnover by mitochondrial autophagy, or mitophagy. In this review, we discuss recent studies on the role of mitophagy in PD. We present three putative models whereby PINK1 and Parkin may affect mitophagy; 1) by shifting the balance between fusion and fission of the mitochondrial network, 2) by modulating mitochondrial motility and 3) by directly recruiting the autophagic machinery to damaged mitochondria. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.


Asunto(s)
Mitofagia , Enfermedad de Parkinson/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Autophagy ; 8(4): 699-700, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22361618

RESUMEN

Despite the emergence of autophagy as a key process for mitochondrial quality control, the existence and persistence of pathogenic mtDNA mutations in human disease suggests that the degradation of dysfunctional mitochondria does not occur widely in vivo. During macroautophagy, a double-membraned cup-shaped structure engulfs cytosolic content. This autophagic vesicle then fuses with lysosomes, allowing hydrolytic enzymes to degrade the contents. Mitochondrial autophagy, or mitophagy, is thought to degrade damaged or nonfunctioning mitochondria specifically. The Parkinson disease-related proteins PINK1 (a mitochondrially localized kinase) and PARK2 (PARKIN, a cytosolically-localized E3 ubiquitin ligase) are essential for targeting mitochondria for mitophagy. Upon chemical uncoupling of the mitochondrial transmembrane potential (Δψ(m)), PINK1 located in the mitochondrial outer membrane recruits PARK2 from the cytosol to the mitochondria, followed by delivery of the organelle to the autophagic machinery for degradation.


Asunto(s)
Autofagia , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Mutación/genética , Línea Celular , Humanos , Potencial de la Membrana Mitocondrial , Modelos Biológicos , Proteínas Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Hum Mol Genet ; 21(5): 978-90, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22080835

RESUMEN

Autophagy has emerged as a key cellular process for organellar quality control, yet this pathway apparently fails to eliminate mitochondria containing pathogenic mutations in mitochondrial DNA (mtDNA) in patients with a variety of human diseases. In order to explore how mtDNA-mediated mitochondrial dysfunction interacts with endogenous autophagic pathways, we examined autophagic status in a panel of human cytoplasmic hybrid (cybrid) cell lines carrying a variety of pathogenic mtDNA mutations. We found that both genetic- and chemically induced loss of mitochondrial transmembrane potential (Δψ(m)) caused recruitment of the pro-mitophagic factor Parkin to mitochondria. Strikingly, however, the loss of Δψ(m) alone was insufficient to prompt delivery of mitochondria to the autophagosome (mitophagy). We found that mitophagy could be induced following treatment with the mTORC1 inhibitor rapamycin in cybrids carrying either large-scale partial deletions of mtDNA or complete depletion of mtDNA. Further, we found that the level of endogenous Parkin is a crucial determinant of mitophagy. These results suggest a two-hit model, in which the synergistic induction of both (i) mitochondrial recruitment of Parkin following the loss of Δψ(m) and (ii) mTORC1-controlled general macroautophagy is required for mitophagy. It appears that mitophagy can be accomplished by the endogenous autophagic machinery, but requires the full engagement of both of these pathways.


Asunto(s)
Autofagia , ADN Mitocondrial/genética , Potencial de la Membrana Mitocondrial , Mitocondrias/fisiología , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Mutación , Fagosomas/fisiología , Proteínas/antagonistas & inhibidores , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
5.
Proc Natl Acad Sci U S A ; 107(1): 378-83, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19966284

RESUMEN

Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinson's disease. Upon a loss of mitochondrial membrane potential (DeltaPsi(m)) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial autophagy. Here, we show that the relocation of Parkin to mitochondria induced by a collapse of DeltaPsi(m) relies on PINK1 expression and that overexpression of WT but not of mutated PINK1 causes Parkin translocation to mitochondria, even in cells with normal DeltaPsi(m). We also show that once at the mitochondria, Parkin is in close proximity to PINK1, but we find no evidence that Parkin catalyzes PINK1 ubiquitination or that PINK1 phosphorylates Parkin. However, co-overexpression of Parkin and PINK1 collapses the normal tubular mitochondrial network into mitochondrial aggregates and/or large perinuclear clusters, many of which are surrounded by autophagic vacuoles. Our results suggest that Parkin, together with PINK1, modulates mitochondrial trafficking, especially to the perinuclear region, a subcellular area associated with autophagy. Thus by impairing this process, mutations in either Parkin or PINK1 may alter mitochondrial turnover which, in turn, may cause the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease.


Asunto(s)
Autofagia/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Línea Celular , Humanos , Ionóforos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitocondrias/ultraestructura , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Transporte de Proteínas/fisiología , Ubiquitina-Proteína Ligasas/genética
6.
Parkinsonism Relat Disord ; 15 Suppl 3: S241-4, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20083000

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder of unknown cause. For decades, a deficit in mitochondrial respiration was thought to be a key factor in PD neurodegeneration. However, excluding a few exceptions where a clinical picture of parkinsonism is associated with a mitochondrial DNA mutation, preclinical and clinical studies have failed to identify any genetic mutations in the genes encoding for the electron transport chain complexes in PD patients. More recently, it has been discovered that mutations in the genes encoding for Parkin, PINK1 and DJ1 are associated with familial forms of PD and with mitochondrial alterations, including morphological abnormalities. These results have led many researchers to revisit the question of mitochondrial biology as a primary mechanism in PD pathogenesis, this time from an angle of perturbation in mitochondrial dynamics and not from the angle of a deficit in respiration.


Asunto(s)
Mitocondrias/patología , Enfermedades Mitocondriales/complicaciones , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Animales , ADN Mitocondrial/genética , Predisposición Genética a la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación , Proteínas Oncogénicas/genética , Enfermedad de Parkinson/genética , Proteína Desglicasa DJ-1 , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...