Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
DNA Repair (Amst) ; 112: 103302, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217496

RESUMEN

BACKGROUND: In primary neuroblastoma, deletions on chromosome 11q are known to result in an increase in the total number of chromosomal breaks. The DNA double-strand break repair pathways mediated by NHEJ are often upregulated in cancer. DLG2, a candidate tumor suppressor gene on chromosome 11q, has previously been implicated in DNA repair. METHODS: We evaluated an association between gene expression and neuroblastoma patient outcome, risk categorization, and 11q status using publicly available microarray data from independent neuroblastoma patient datasets. Functional studies were conducted using comet assay and H2AX phosphorylation in neuroblastoma cell lines and in the fruit fly with UVC-induced DNA breaks. RESULTS: We show that the NHEJ genes PARP1 and FEN1 are over expressed in neuroblastoma and restoration of DLG2 impairs their gene and protein expression. When exposed to UVC radiation, cells with DLG2 over expression show less DNA fragmentation and induce apoptosis in a p53 S46 dependent manner. We could also confirm that DLG2 over expression results in CHK1 phosphorylation consistent with previous reports of G2/M maintenance. CONCLUSIONS: Taken together, we show that DLG2 over expression increases p53 mediated apoptosis in response to etoposide and UVC mediated genotoxicity and reduced DNA replication machinery.


Asunto(s)
Neuroblastoma , Proteína p53 Supresora de Tumor , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Bioinform Adv ; 2(1): vbac006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699378

RESUMEN

Motivation: Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators. Results: We developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease-associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data. Availability and implementation: MODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
BMC Genomics ; 22(1): 631, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461822

RESUMEN

BACKGROUND: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. RESULT: We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10- 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. CONCLUSIONS: We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esclerosis Múltiple , Epigenómica , Redes Reguladoras de Genes , Humanos , Esclerosis Múltiple/genética , Factores de Riesgo
4.
Bioinformatics ; 36(12): 3918-3919, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271876

RESUMEN

MOTIVATION: Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form the so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best-performing method. Hence, there is a need for combining these methods to generate robust disease modules. RESULTS: We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases. AVAILABILITY AND IMPLEMENTATION: MODifieR is available under the GNU GPL license and can be freely downloaded from https://gitlab.com/Gustafsson-lab/MODifieR and as a Docker image from https://hub.docker.com/r/ddeweerd/modifier. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Programas Informáticos , Transcriptoma
5.
BMC Bioinformatics ; 19(1): 531, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558531

RESUMEN

BACKGROUND: Various algorithms have been developed to predict fetal trisomies using cell-free DNA in non-invasive prenatal testing (NIPT). As basis for prediction, a control group of non-trisomy samples is needed. Prediction accuracy is dependent on the characteristics of this group and can be improved by reducing variability between samples and by ensuring the control group is representative for the sample analyzed. RESULTS: NIPTeR is an open-source R Package that enables fast NIPT analysis and simple but flexible workflow creation, including variation reduction, trisomy prediction algorithms and quality control. This broad range of functions allows users to account for variability in NIPT data, calculate control group statistics and predict the presence of trisomies. CONCLUSION: NIPTeR supports laboratories processing next-generation sequencing data for NIPT in assessing data quality and determining whether a fetal trisomy is present. NIPTeR is available under the GNU LGPL v3 license and can be freely downloaded from https://github.com/molgenis/NIPTeR or CRAN.


Asunto(s)
Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Diagnóstico Prenatal/métodos , Trisomía/diagnóstico , Femenino , Humanos , Pruebas de Detección del Suero Materno , Valor Predictivo de las Pruebas , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...