Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 259: 121786, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38875862

RESUMEN

Rivers are one of the main conduits that deliver plastic from land into the sea, and also act as reservoirs for plastic retention. Yet, our understanding of the extent of river exposure to plastic pollution remains limited. In particular, there has been no comprehensive quantification of the contributions from different river compartments, such as the water surface, water column, riverbank and floodplain to the overall river plastic transport and storage. This study aims to provide an initial quantification of these contributions. We first identified the main relevant transport processes for each river compartment considered. We then estimated the transport and storage terms, by harmonizing available observations on surface, suspended and floodplain plastic. We applied our approach to two river sections in The Netherlands, with a focus on macroplastics (≥2.5 cm). Our analysis revealed that for the studied river sections, suspended plastics account for over 96% of item transport within the river channel, while their relative contribution to mass transport is only 30%-37% (depending on the river section considered). Surface plastics predominantly consisted of heavier items (mean mass: 7.1 g/#), whereas suspended plastics were dominated by lighter fragments (mean mass: 0.1 g/#). Additionally, the majority (98%) of plastic mass was stored within the floodplains, with the river channel accounting for only 2% of the total storage. Our study developed a harmonized approach for quantifying plastic transport and storage across different river compartments, providing a replicable methodology applicable to different regions. Our findings emphasize the importance of systematic monitoring programs across river compartments for comprehensive insights into riverine plastic pollution.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Ríos , Ríos/química , Países Bajos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 55(8): 4932-4942, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33792293

RESUMEN

Anthropogenic macrolitter (>0.5 cm) in rivers is of increasing concern. It has been found to have an adverse effect on riverine ecosystem health, and the livelihoods of the communities depending on and living next to these ecosystems. Yet, little is known on how macrolitter reaches and propagates through these ecosystems. A better understanding of macrolitter transport dynamics is key in developing effective reduction, preventive, and cleanup measures. In this study, we analyzed a novel dataset of citizen science riverbank macrolitter observations in the Dutch Rhine-Meuse delta, spanning two years of observations on over 200 unique locations, with the litter categorized into 111 item categories according to the river-OSPAR protocol. With the use of regression models, we analyzed how much of the variation in the observations can be explained by hydrometeorology, observer bias, and location, and how much can instead be explained by temporal trends and seasonality. The results show that observation bias is very low, with only a few exceptions, in contrast with the total variance in the observations. Additionally, the models show that precipitation, wind speed, and river flow are all important explanatory variables in litter abundance variability. However, the total number of items that can significantly be explained by the regression models is 19% and only six item categories display an R2 above 0.4. This suggests that a very substantial part of the variability in macrolitter abundance is a product of chance, caused by unaccounted (and often fundamentally unknowable) stochastic processes, rather than being driven by the deterministic processes studied in our analyses. The implications of these findings are that for modeling macrolitter movement through rivers effectively, a probabilistic approach and a strong uncertainty analysis are fundamental. In turn, point observations of macrolitter need to be planned to capture short-term variability.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos , Procesos Estocásticos
3.
PLoS One ; 15(1): e0226983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31895928

RESUMEN

Dune growth and post-storm recovery of foredune systems is predominantly determined by the aeolian sand transport through the beach-dune interface. Potential sand transport rates, estimated with empirical transport equations using regionally representative wind conditions, are generally too high. This positive bias might be, at least partly, due to the effect of the beach and foredune topography on the regional airflow. Here, we investigate the relation between local (on the beach) and regional wind velocities and direction in front of the high (∼22 m) and steep (∼1:2.5) foredune partially vegetated with Marram grass at Egmond aan Zee, The Netherlands based on a dataset with a large variety in wind speeds spanning over all onshore wind directions. We observed that local 10-minute averaged wind speed and direction can differ from the regional wind conditions (here measured 15 km away from the study site) depending on the regional approach angle of the wind. The ratio of local over regional wind speed is smallest (∼0.39) when the wind direction is dune-normal. This ratio increases with increasing obliquity towards almost 1 for alongshore winds. Wind steering only happens at the dune foot and is the largest (∼13°) with oblique approaching winds of 40° from the dune normal. Perpendicular and nearly alongshore winds do not show any steering near the dune foot. The use of local rather than regional wind conditions in a potential transport equation reduces the predicted annual supply from 86 to 32 m3/m/y, substantially closer to the measured deposition of 15 m3/m/y. The drop in velocity was more important to the reduction in predicted supply than the alongshore steering.


Asunto(s)
Playas , Viento , Ecosistema , Sedimentos Geológicos , Países Bajos , Arena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA