Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neurochir (Wien) ; 166(1): 204, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713405

RESUMEN

PURPOSE: Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS: We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS: Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS: Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.


Asunto(s)
Cognición , Craneotomía , Pruebas Neuropsicológicas , Vigilia , Humanos , Craneotomía/métodos , Craneotomía/efectos adversos , Vigilia/fisiología , Cognición/fisiología , Monitoreo Intraoperatorio/métodos , Monitorización Neurofisiológica Intraoperatoria/métodos
2.
J Neurosci ; 42(46): 8716-8728, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36253083

RESUMEN

Sensory driven activity during early life is critical for setting up the proper connectivity of the sensory cortices. We ask here whether social play behavior, a particular form of social interaction that is highly abundant during postweaning development, is equally important for setting up connections in the developing prefrontal cortex (PFC). Young male rats were deprived from social play with peers during the period in life when social play behavior normally peaks [postnatal day 21-42] (SPD rats), followed by resocialization until adulthood. We recorded synaptic currents in layer 5 cells in slices from medial PFC of adult SPD and control rats and observed that inhibitory synaptic currents were reduced in SPD slices, while excitatory synaptic currents were unaffected. This was associated with a decrease in perisomatic inhibitory synapses from parvalbumin-positive GABAergic cells. In parallel experiments, adult SPD rats achieved more reversals in a probabilistic reversal learning (PRL) task, which depends on the integrity of the PFC, by using a more simplified cognitive strategy than controls. Interestingly, we observed that one daily hour of play during SPD partially rescued the behavioral performance in the PRL, but did not prevent the decrease in PFC inhibitory synaptic inputs. Our data demonstrate the importance of unrestricted social play for the development of inhibitory synapses in the PFC and cognitive skills in adulthood and show that specific synaptic alterations in the PFC can result in a complex behavioral outcome.SIGNIFICANCE STATEMENT This study addressed the question whether social play behavior in juvenile rats contributes to functional development of the prefrontal cortex (PFC). We found that rats that had been deprived from juvenile social play (social play deprivation - SPD) showed a reduction in inhibitory synapses in the PFC and a simplified strategy to solve a complex behavioral task in adulthood. Providing one daily hour of play during SPD partially rescued the cognitive skills in these rats, but did not prevent the reduction in PFC inhibitory synapses. Our results demonstrate a key role for unrestricted juvenile social play in PFC development and emphasize the complex relation between PFC circuit connectivity and cognitive function.


Asunto(s)
Corteza Prefrontal , Sinapsis , Ratas , Masculino , Animales , Sinapsis/metabolismo , Corteza Prefrontal/metabolismo , Parvalbúminas/metabolismo , Cognición , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...