Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geroscience ; 45(2): 1231-1236, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35752705

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.


Asunto(s)
Enfermedades Cardiovasculares , Progeria , Humanos , Persona de Mediana Edad , Anciano , Adolescente , Progeria/genética , Hematopoyesis Clonal , Lamina Tipo A/genética , Envejecimiento/genética , Envejecimiento/metabolismo
2.
Circulation ; 147(1): 47-65, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325906

RESUMEN

BACKGROUND: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS: We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS: Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS: These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiomiopatías , Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Cardiopatías Congénitas/complicaciones , Cardiomiopatías/etiología , Miocitos Cardíacos , Válvula Aórtica/diagnóstico por imagen , Factores de Transcripción , Proteínas Cromosómicas no Histona
3.
J Am Coll Cardiol ; 77(14): 1747-1759, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33832602

RESUMEN

BACKGROUND: Clonal hematopoiesis driven by somatic mutations in hematopoietic cells, frequently called clonal hematopoiesis of indeterminate potential (CHIP), has been associated with adverse cardiovascular outcomes in population-based studies and in patients with ischemic heart failure (HF) and reduced left ventricular ejection fraction (LVEF). Yet, the impact of CHIP on HF progression, including nonischemic etiology, is unknown. OBJECTIVES: The purpose of this study was to assess the clinical impact of clonal hematopoiesis on HF progression irrespective of its etiology. METHODS: The study cohort comprised 62 patients with HF and LVEF <45% (age 74 ± 7 years, 74% men, 52% nonischemic, and LVEF 30 ± 8%). Deep sequencing was used to detect CHIP mutations with a variant allelic fraction >2% in 54 genes. Patients were followed for at least 3.5 years for various adverse events including death, HF-related death, and HF hospitalization. RESULTS: CHIP mutations were detected in 24 (38.7%) patients, without significant differences in all-cause mortality (p = 0.151). After adjusting for risk factors, patients with mutations in either DNA methyltransferase 3 alpha (DNMT3A) or Tet methylcytosine dioxygenase 2 (TET2) exhibited accelerated HF progression in terms of death (hazard ratio [HR]: 2.79; 95% confidence interval [CI]: 1.31 to 5.92; p = 0.008), death or HF hospitalization (HR: 3.84; 95% CI: 1.84 to 8.04; p < 0.001) and HF-related death or HF hospitalization (HR: 4.41; 95% CI: 2.15 to 9.03; p < 0.001). In single gene-specific analyses, somatic mutations in DNMT3A or TET2 retained prognostic significance with regard to HF-related death or HF hospitalization (HR: 4.50; 95% CI: 2.07 to 9.74; p < 0.001, for DNMT3A mutations; HR: 3.18; 95% CI: 1.52 to 6.66; p = 0.002, for TET2 mutations). This association remained significant irrespective of ischemic/nonischemic etiology. CONCLUSIONS: Somatic mutations that drive clonal hematopoiesis are common among HF patients with reduced LVEF and are associated with accelerated HF progression regardless of etiology.


Asunto(s)
Hematopoyesis Clonal/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Unión al ADN/genética , Insuficiencia Cardíaca , Proteínas Proto-Oncogénicas/genética , Disfunción Ventricular Izquierda , Anciano , Causas de Muerte , ADN Metiltransferasa 3A , Dioxigenasas , Progresión de la Enfermedad , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Mortalidad , Mutación , Pronóstico , Estudios Prospectivos , España/epidemiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología
4.
PLoS Genet ; 16(12): e1008960, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33362210

RESUMEN

Most B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GC B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supra-activity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.


Asunto(s)
Citidina Desaminasa/genética , Heterogeneidad Genética , Linfoma de Células B/genética , Uracil-ADN Glicosidasa/genética , Animales , Transformación Celular Neoplásica/genética , Células Cultivadas , Evolución Clonal , Citidina Desaminasa/metabolismo , Femenino , Linfoma de Células B/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Uracil-ADN Glicosidasa/metabolismo
5.
Front Microbiol ; 8: 276, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28298903

RESUMEN

Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here.

6.
PLoS One ; 11(6): e0158525, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27355361

RESUMEN

HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS), and doubly spliced (DS). Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G), were identified. In four samples, three of non-B subtypes, five 3' splice sites (3'ss) mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides) to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3'ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h) and a subtype G (A7i) viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3'ss. Usage of unusual 3'ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known.


Asunto(s)
VIH-1/genética , Empalme del ARN , ARN Viral/genética , Linfocitos T CD4-Positivos/citología , Genoma Viral , Infecciones por VIH/virología , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Filogenia , Sitios de Empalme de ARN , Análisis de Secuencia de ADN , Replicación Viral
7.
Infect Genet Evol ; 36: 339-344, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26455634

RESUMEN

Toll-like receptor 8 (TLR8) polymorphisms have been related to hepatitis C virus (HCV) infection. The aim was to estimate the association of TLR8 polymorphisms with HCV-related outcomes in HIV/HCV coinfected patients. We performed a cross-sectional study of 220 patients who underwent a liver biopsy. TLR8 polymorphisms were genotyped using GoldenGate® assay. The outcome variables were non-fibrosis (F0), mild-inflammation (A0/A1), and non-steatosis [fatty hepatocytes (FH) <10%]. Logistic regression analysis was used to compare the outcome variables according to TLR8 polymorphisms. Four polymorphisms were analyzed (rs1013151, rs5744069, rs17256081 and rs3764880rs1013151). Female patients had higher frequency of TLR8 major alleles at rs17256081 and rs101315, and minor alleles at rs3764880 and rs5744069. Male patients had higher frequency of TLR8 minor alleles except for rs3764880, where major alleles were higher (p<0.01). Two TLR8 polymorphisms (rs1013151 and rs5744069) were significantly associated with non-fibrosis (F0) [adjusted odds ratio (aOR)=4.42 (95% of confidence interval (95%CI)=1.54; 12.68) (p=0.006) and aOR=4.76 (95%CI=1.69; 13.37) (p=0.003); respectively]. When data were stratified by gender, rs1013151 and rs5744069 polymorphisms remained significant for male patients [adjusted odds ratio (aOR)=4.49 (95%CI=1.08; 18.62) (p=0.039) and aOR=6.17 (95%CI=1.45; 26.20) (p=0.014); respectively]. When data were stratified by major HCV genotypes, patients infected with HCV genotype 1 (GT1) had significant values for both rs1013151 and rs5744069 polymorphisms [aOR=5.79 (95%CI=1.44; 23.32) (p=0.013) and aOR=8.01 (95%CI=2.16; 35.65) (p=0.005); respectively]. Finally, none of the TLR8 polymorphisms were significantly associated with mild-inflammation or non-steatosis. In conclusion, TLR8 polymorphisms seem to be related to non-progression of liver fibrosis in HIV/HCV coinfected patients, particularly in males and those patients infected with GT1.


Asunto(s)
Coinfección , Predisposición Genética a la Enfermedad , Infecciones por VIH/genética , Infecciones por VIH/virología , Hepatitis C Crónica/genética , Hepatitis C Crónica/virología , Polimorfismo de Nucleótido Simple , Receptor Toll-Like 8/genética , Adulto , Alelos , Biopsia , Estudios Transversales , Progresión de la Enfermedad , Femenino , Estudios de Asociación Genética , Genotipo , Hepacivirus/genética , Hepatitis C Crónica/patología , Humanos , Desequilibrio de Ligamiento , Hígado/patología , Hígado/virología , Masculino , Evaluación del Resultado de la Atención al Paciente , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...