Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 132(6): 4310-4320, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35332971

RESUMEN

AIMS: This study aimed to evaluate the combined effect of a mannose-binding lectin Helja with fluconazole (FLC) on Candida albicans and to get insights about the joint action mechanism. METHODS AND RESULTS: The fungal growth was assessed following the optical density at 630 nm. Fungal cell morphology and nucleus integrity were analysed by flow cytometry and confocal laser scanning microscopy using Calcofluor White (CFW) and 4',6-diamidino-2-phenylindole (DAPI) staining respectively. The basis of Helja + FLC action on cell wall and plasma membrane was analysed using perturbing agents. The Helja + FLC combination exhibited an inhibitory effect of fungal growth about three times greater than the sum of both compounds separately and inhibited fungal morphological plasticity, an important virulence attribute associated with drug resistance. Cells treated with Helja + FLC showed morphological changes, nucleus disintegration and formation of multimera structures, leading to cell collapse. CONCLUSIONS: Our findings indicate that the Helja + FLC combination exhibited a potent antifungal activity based on their simultaneous action on different microbial cell targets. SIGNIFICANCE AND IMPACT OF STUDY: The combination of a natural protein with conventional drugs might be helpful for the design of effective therapeutic strategies against Candida, contributing to minimize the development of drug resistance and host cell toxicity.


Asunto(s)
Candida albicans , Fluconazol , Antifúngicos/farmacología , Candida , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana
3.
Curr Protein Pept Sci ; 21(3): 284-294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31490746

RESUMEN

Lectins are proteins characterized by their ability to specifically bind different carbohydrate motifs. This feature is associated with their endogenous biological function as well as with multiple applications. Plants are important natural sources of these proteins; however, only a reduced group was shown to display antifungal activity. Although it is hypothesized that the target of lectins is the fungal cell wall, the mechanism through which they exert the antifungal action is poorly understood. This topic is relevant to improve treatment against pathogens of importance for human health. In this context, mechanisms pointing to essential attributes for virulence instead of the viability of the pathogen emerge as a promising approach. This review provides the current knowledge on the action mechanism of plant antifungal lectins and their putative use for the development of novel active principles against fungal infections.


Asunto(s)
Antifúngicos/farmacología , Hongos/efectos de los fármacos , Micosis/tratamiento farmacológico , Lectinas de Plantas/farmacología , Hongos/patogenicidad , Humanos , Virulencia/efectos de los fármacos
4.
Phytomedicine ; 58: 152875, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30884454

RESUMEN

BACKGROUND: In our previous study, we isolated and characterized a lectin called Helja from Helianthus annuus (sunflower) and then, in a further study, demonstrated its antifungal activity against Candida spp. Since Candida infections are a major health concern due to the increasing emergence of antifungal resistant strains, the search for new antifungal agents offers a promising opportunity for improving the treatment strategies against candidiasis. PURPOSE: The aim of this work was to get insights about the mechanism of action of Helja, an antifungal lectin of H. annuus, and to explore its ability to inhibit Candida albicans biofilm development and adherence to buccal epithelial cells (BEC). STUDY DESIGN/METHODS: Yeast viability was evaluated by Evans Blue uptake and counting of colony forming units (CFU). The yeast cell integrity was assessed using Calcofluor White (CFW) as a cell wall perturbing agent and sorbitol as osmotic protectant. The induction of oxidative stress was evaluated using 3,3'-diaminobenzidine (DAB) for detection of hydrogen peroxide. The adherence was determined by counting the yeast cells attached to BEC after methylene blue staining. The biofilms were developed on polystyrene microplates, visualized by confocal laser scanning microscopy and the viable biomass was quantified by CFU counting. The binding lectin-Candida was assessed using Helja conjugated to fluorescein isothiocyanate (Helja-FITC) and simultaneous staining with CFW. The cellular surface hydrophobicity (CSH) was determined using a microbial adhesion to hydrocarbons method. RESULTS: C. albicans cells treated with 0.1 µg/µl of Helja showed a drastic decrease in yeast survival. The lectin affected the fungal cell integrity, induced the production of hydrogen peroxide and inhibited the morphological transition from yeast to filamentous forms. Helja caused a significant reduction of adherent cells and a decrease in biofilm biomass and coverage area. The treatment with the protein also reduced the surface hydrophobicity of fungal cells. We show the binding of Helja-FITC to yeast cells distributed as a thin outer layer to the CFW signal, and this interaction was displaced by mannose and Concanavalin A. CONCLUSION: The results demonstrate the interaction of Helja with the mannoproteins of C. albicans cell wall, the disruption of the cell integrity, the induction of oxidative stress, the inhibition of the morphological transition from yeast to filamentous forms and the fungal cell viability loss. The binding Helja-Candida also provides a possible explanation of the lectin effect on cell adherence, biofilm development and CSH, relevant features related to virulence of the pathogen.


Asunto(s)
Antifúngicos/metabolismo , Candida albicans/efectos de los fármacos , Helianthus/química , Lectinas de Plantas/metabolismo , Lectinas de Plantas/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/patogenicidad , Candida albicans/fisiología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Células Cultivadas , Células Epiteliales/microbiología , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
6.
J Plant Physiol ; 221: 22-31, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29223879

RESUMEN

Lectins are carbohydrate-affinity proteins with the ability to recognize and reversibly bind specific glycoconjugates. We have previously isolated a bioactive sunflower mannose-binding lectin belonging to the jacalin-related family called Helja. Despite of the significant number of plant lectins described in the literature, only a small group exhibits antifungal activity and the mechanism by which they kill fungi is still not understood. The aim of this work was to explore Helja activity on plant pathogenic fungi, and provide insights into its mechanism of action. Through cellular and biochemical experimental approaches, here we show that Helja exerts an antifungal effect on Sclerotinia sclerotiorum, a sunflower pathogen. The lectin interacts with the fungal spore surface, permeabilizes its plasma membrane, can be internalized into the cell and induces oxidative stress, finally leading to the cell death. On the other hand, Helja is inactive towards Fusarium solani, a non-pathogen of sunflower, showing the selective action of the lectin. The mechanistic basis for the antifungal activity of an extracellular jacalin lectin is presented, suggesting its initial interaction with fungal cell wall carbohydrates and further internalization. The implication of our findings for plant defense is discussed.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Fusarium/efectos de los fármacos , Helianthus/metabolismo , Lectinas de Unión a Manosa/farmacología , Lectinas de Plantas/farmacología , Helianthus/microbiología
7.
J Exp Bot ; 68(20): 5485-5495, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29145622

RESUMEN

Extracellular vesicles (EV) are membrane particles released by cells into their environment and are considered to be key players in intercellular communication. EV are produced by all domains of life but limited knowledge about EV in plants is available, although their implication in plant defense has been suggested. We have characterized sunflower EV and tested whether they could interact with fungal cells. EV were isolated from extracellular fluids of seedlings and characterized by transmission electron microscopy and proteomic analysis. These nanovesicles appeared to be enriched in cell wall remodeling enzymes and defense proteins. Membrane-labeled EV were prepared and their uptake by the phytopathogenic fungus Sclerotinia sclerotiorum was verified. Functional tests further evaluated the ability of EV to affect fungal growth. Spores treated with plant EV showed growth inhibition, morphological changes, and cell death. Conclusive evidence on the existence of plant EV is presented and we demonstrate their ability to interact with and kill fungal cells. Our results introduce the concept of cell-to-cell communication through EV in plants.


Asunto(s)
Ascomicetos/fisiología , Comunicación Celular , Vesículas Extracelulares/fisiología , Helianthus/fisiología , Helianthus/microbiología , Microscopía Electrónica de Transmisión , Enfermedades de las Plantas/microbiología , Proteómica , Plantones/microbiología , Plantones/fisiología
8.
Pestic Biochem Physiol ; 140: 30-35, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28755691

RESUMEN

Plants synthesize diverse types of secondary metabolites and some of them participate in plant protection against pathogen attack. These compounds are biodegradable and renewable alternatives, which may be envisaged for the control of plant pests and diseases. Chlorogenic acid (CGA) is a phenolic secondary metabolite which accumulates in diverse plant tissues and can be found in several agro-industrial by-products and waste. The aim of this work was to determine whether CGA could control the growth of various plant pathogenic fungi, gaining insight into its mechanism of action. Microscopic analysis showed the complete inhibition of spore germination or reduction of mycelial growth for Sclerotinia sclerotiorum, Fusarium solani, Verticillium dahliae, Botrytis cinerea and Cercospora sojina. CGA concentrations that did not completely abolish spore germination were able to produce a partial inhibition of mycelial growth. Viability tests and vital dye staining demonstrate that CGA induces fungal cell lysis. Its fungicidal activity involves an early membrane permeabilization of the spores. These results show the antifungal activity of CGA against phytopathogenic fungi relevant in horticulture and agriculture highlighting the potential of CGA-enriched wastes and by-products to be used as biofungicides.


Asunto(s)
Ácido Clorogénico/farmacología , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Supervivencia Celular/efectos de los fármacos , Micelio/efectos de los fármacos
9.
Biopolymers ; 108(3)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28073158

RESUMEN

Many Fusarium species are able to cause severe infections in plants as well as in animals and humans. Therefore, the discovery of new antifungal agents is of paramount importance. CaThi belongs to the thionins, which are cationic peptides with low molecular weights (∼5 kDa) that have toxic effects against various microorganisms. Herein, we study the mechanism of action of CaThi and its combinatory effect with fluconazole (FLC) against Fusarium solani. The mechanism of action of CaThi was studied by growth inhibition, viability, plasma membrane permeabilization, ROS induction, caspase activation, localization, and DNA binding capability, as assessed with Sytox green, DAB, FITC-VAD-FMK, CaThi-FITC, and gel shift assays. The combinatory effect of CaThi and FLC was assessed using a growth inhibition assay. Our results demonstrated that CaThi present a dose dependent activity and at the higher used concentration (50 µg mL-1 ) inhibits 83% of F. solani growth, prevents the formation of hyphae, permeabilizes membranes, induces endogenous H2 O2 , activates caspases, and localizes intracellularly. CaThi combined with FLC, at concentrations that alone do not inhibit F. solani, result in 100% death of F. solani when combined. The data presented in this study demonstrate that CaThi causes death of F. solani via apoptosis; an intracellular target may also be involved. Combined treatment using CaThi and FLC is a strong candidate for studies aimed at improved targeting of F. solani. This strategy is of particular interest because it minimizes selection of resistant microorganisms.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Fluconazol/farmacología , Tioninas/farmacología , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/química , Capsicum/química , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Frutas/química , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Humanos , Hifa/efectos de los fármacos , Hifa/patogenicidad , Tioninas/química
10.
Int J Mol Sci ; 18(1)2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28075401

RESUMEN

According to their sugar recognition specificity, plant lectins are proposed as bioactive proteins with potential in cancer treatment and diagnosis. Helja is a mannose-specific jacalin-like lectin from sunflower which was shown to inhibit the growth of certain fungi. Here, we report its recombinant expression in a prokaryotic system and its activity in neurobalstoma cells. Helja coding sequence was fused to the pET-32 EK/LIC, the enterokinase/Ligation-independent cloning vector and a 35 kDa protein was obtained in Escherichia coli representing Helja coupled to thioredoxin (Trx). The identity of this protein was verified using anti-Helja antibodies. This chimera, named Trx-rHelja, was enriched in the soluble bacterial extracts and was purified using Ni+2-Sepharose and d-mannose-agarose chromatography. Trx-rHelja and the enterokinase-released recombinant Helja (rHelja) both displayed toxicity on human SH-SY5Y neuroblastomas. rHelja decreased the viability of these tumor cells by 75% according to the tetrazolium reduction assay, and microscopic analyses revealed that the cell morphology was disturbed. Thus, the stellate cells of the monolayer became spheroids and were isolated. Our results indicate that rHelja is a promising tool for the development of diagnostic or therapeutic methods for neuroblastoma cells, the most common solid tumors in childhood.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Helianthus/química , Lectinas de Plantas/farmacología , Proteínas Recombinantes , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Lectinas de Plantas/aislamiento & purificación
11.
J Extracell Vesicles ; 6(1): 1407213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30044885

RESUMEN

In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host-pathogen interaction, including invasion, immunomodulation, and pathology as well as parasite-parasite communication. In this report, we summarised the role of EVs in infections caused by viruses, bacteria, fungi, protozoa, and helminths based on the talks and discussions carried out during the International Society for Extracellular Vesicles (ISEV) workshop held in São Paulo (November, 2016), Brazil, entitled Cross-organism Communication by Extracellular Vesicles: Hosts, Microbes and Parasites.

12.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3429-3443, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27614033

RESUMEN

BACKGROUND: Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef1-Saccharomyces cerevisiae interaction. METHODS: ApDef1-S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. RESULTS: ApDef1 caused S. cerevisiae cell death and MIC was 7.8µM. Whole cell population died after 18h of ApDef1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef1 induced death. ApDef1-S. cerevisiae interaction resulted in membrane permeabilization, H2O2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. CONCLUSIONS: ApDef1-S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. GENERAL SIGNIFICANCE: We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef1-S. cerevisiae interaction.


Asunto(s)
Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Defensinas/farmacología , Viabilidad Microbiana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/farmacología , Saccharomyces cerevisiae/citología , Antifúngicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Cinética , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
13.
Plant Signal Behav ; 10(12): e1105417, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26479260

RESUMEN

Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed.


Asunto(s)
Antígenos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Germinación , Mutación/genética , Proteínas de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácidos Grasos/metabolismo , Datos de Secuencia Molecular , Plantones/metabolismo
14.
J Plant Physiol ; 183: 144-53, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26140981

RESUMEN

Jacalin-related lectins (JRLs) encompass cytosolic, nuclear and vacuolar members displaying the jacalin domain in one or more copies or in combination with unrelated domains. Helianthus annuus jacalin (Helja) is a mannose-specific JRL previously identified in the apoplast of Helianthus annuus seedlings, and this protein has been proposed to follow unconventional secretion. Here, we describe the full-length Helja cDNA sequence, which presents a unique jacalin domain (merolectin) and the absence of a signal peptide, confirming that the protein cannot follow the classical ER-dependent secretory pathway. Helja mRNA is present in seeds, cotyledons, roots and hypocotyls, but no transcripts were detected in the leaves. Searches for sequence similarity showed that Helja is barely similar to other JRLs present in H. annuus databases and less than 45% identical to other monocot or dicot JRLs. Strikingly, most of the merolectins recovered through data mining using Helja as a query were predicted as apoplastic, although most of these proteins lack the signal peptide required for classical secretion. Thus, Helja is the first bait identified to recover putative unconventionally secreted lectins. Because the recovered JRLs are widely distributed among the plant kingdom, an as yet unknown role for jacalin lectins in the apoplast is emerging.


Asunto(s)
Helianthus/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Helianthus/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Lectinas de Plantas/química , Proteínas de Plantas/metabolismo
15.
Plant Signal Behav ; 10(9): e992285, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875793

RESUMEN

Nitric oxide (NO) is a major plant signaling molecule that plays key roles during plant-pathogen interactions and plant development. Previous work showed the participation of NO in the development and lignin composition of sunflower roots. Thereby, we have hypothesized that NO applications could control the attack of the fungal pathogen Verticillium dahliae in sunflowers. Seedlings growing hydroponically were pretreated with NO donors and further inoculated with the fungus. Evaluation of disease symptoms showed that NO pretreatments could not reduce Verticillium wilt. Strikingly, NO donors appear to promote the fungal infection. These results indicate that NO applications were unable to protect sunflowers from Verticillium attack and highlight the role played by the fine tuning regulation of NO levels required to balance plant responses between development and defense.


Asunto(s)
Helianthus/crecimiento & desarrollo , Helianthus/inmunología , Óxido Nítrico/farmacología , Desarrollo de la Planta/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/inmunología , Helianthus/efectos de los fármacos , Helianthus/microbiología , Hidroponía , Donantes de Óxido Nítrico/farmacología , Enfermedades de las Plantas/microbiología , Plantones/efectos de los fármacos , Plantones/microbiología , Verticillium/efectos de los fármacos , Verticillium/fisiología
16.
Nitric Oxide ; 39: 20-8, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24747108

RESUMEN

Nitric oxide (NO) is a signal molecule involved in several physiological processes in plants, including root development. Despite the importance of NO as a root growth regulator, the knowledge about the genes and metabolic pathways modulated by NO in this process is still limited. A constraint to unravel these pathways has been the use of exogenous applications of NO donors that may produce toxic effects. We have analyzed the role of NO in root architecture through the depletion of endogenous NO using the scavenger cPTIO. Sunflower seedlings growing in liquid medium supplemented with cPTIO showed unaltered primary root length while the number of lateral roots was deeply reduced; indicating that endogenous NO participates in determining root branching in sunflower. The transcriptional changes induced by NO depletion have been analyzed using a large-scale approach. A microarray analysis showed 330 genes regulated in the roots (p≤0.001) upon endogenous NO depletion. A general cPTIO-induced up-regulation of genes involved in the lignin biosynthetic pathway was observed. Even if no detectable changes in total lignin content could be detected, cell walls analyses revealed that the ratio G/S lignin increased in roots treated with cPTIO. This means that endogenous NO may control lignin composition in planta. Our results suggest that a fine tuning regulation of NO levels could be used by plants to regulate root architecture and lignin composition. The functional implications of these findings are discussed.


Asunto(s)
Helianthus/efectos de los fármacos , Óxido Nítrico/farmacología , Depuradores de Radicales Libres/farmacología , Perfilación de la Expresión Génica , Helianthus/química , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Lignina/análisis , Lignina/química , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
17.
Curr Microbiol ; 69(1): 88-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24623187

RESUMEN

Lectins are carbohydrate-binding proteins with a high specificity for a variety of glycoconjugate sugar motifs. The jacalin-related lectins (JRL) are considered to be a small sub-family composed of galactose- and mannose-specific members. Using a proteomics approach, we have detected a 16 kDa protein (Helja) in sunflower seedlings that were further purified by mannose-agarose affinity chromatography. The aim of this work was to characterize the biological activity of Helja and to explore potential applications for the antifungal activity of this plant lectin against medically important yeasts. To initially assess the agglutination properties of the lectin, Saccharomyces cerevisiae cells were incubated with increasing concentrations of the purified lectin. At a concentration of 120 µg/ml, Helja clearly agglutinated these cells. The ability of different sugars to inhibit S. cerevisiae cell agglutination determined its carbohydrate-specificity. Among the monosaccharides tested, D-mannose had the greatest inhibitory effect, with a minimal concentration of 1.5 mM required to prevent cell agglutination. The antifungal activity was evaluated using pathogenic fungi belonging to the Candida and Pichia genera. We demonstrate that 200 µg/ml of Helja inhibited the growth of all yeasts, and it induced morphological changes, particularly through pseudohyphae formation on Candida tropicalis. Helja alters the membrane permeability of the tested fungi and is also able to induce the production of reactive oxygen species in C. tropicalis cells. We concluded that Helja is a mannose-binding JRL with cell agglutination capabilities and antifungal activity against yeasts. The biological properties of Helja may have practical applications in the control of human pathogens.


Asunto(s)
Antifúngicos/farmacología , Helianthus/química , Lectinas/farmacología , Micosis/tratamiento farmacológico , Aglutinación , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Galactosa/metabolismo , Humanos , Manosa/metabolismo , Óxido Nítrico/metabolismo , Pichia/efectos de los fármacos , Pichia/crecimiento & desarrollo , Lectinas de Plantas/farmacología , Proteínas de Plantas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Plantones/química , Semillas/química
18.
J Exp Bot ; 63(18): 6555-63, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23162115

RESUMEN

Plant lipid transfer proteins (LTPs) constitute a family of small proteins recognized as being extracellular. In agreement with this notion, several lines of evidence have shown the apoplastic localization of HaAP10, a LTP from Helianthus annuus dry seeds. However, HaAP10 was recently detected intracellularly in imbibing seeds. To clarify its distribution, immunolocalization experiments were performed during the course of germination and confirmed its intracellular localization upon early seed imbibition. Further assays using a hydrophobic dye, FM4-64, inhibitors of vesicular traffic, and immunolocalization of the pectin rhamnogalacturonan-II, allowed the conclusion that endocytosis is activated as soon as seed imbibition starts. Furthermore, this study demonstrated that HaAP10 is endocytosed throughout imbibition. Biochemical and cellular approaches indicate that the intracellular fraction of this LTP appears associated with oil bodies and some evidence also suggest its presence in glyoxysomes. So, HaAP10 is apoplastic in dry seeds and upon imbibition is rapidly internalized and relocalized to organelles involved in lipid metabolism. The results suggest that HaAP10 may be acting as a fatty acid shuttle between the oil body and the glyoxysome during seed germination. This concept is consistent with the initial proposition that LTPs participate in the intracellular transfer of lipids which was further denied based on their apparent extracellular localization. This report reveals for the first time the relocalization of a lipid transfer protein and opens new perspectives on its role.


Asunto(s)
Antígenos de Plantas/metabolismo , Proteínas Portadoras/metabolismo , Germinación , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Fluoroinmunoensayo , Glioxisomas/metabolismo , Helianthus/citología , Microscopía Confocal , Microscopía Electrónica de Transmisión , Pectinas/metabolismo , Estructuras de las Plantas/metabolismo , Transporte de Proteínas , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Semillas/crecimiento & desarrollo
19.
Plant Signal Behav ; 7(5): 544-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22516827

RESUMEN

The presence of apoplastic proteins without predicted signal peptide in the gene sequence suggests the existence of protein secretion independent of the ER/Golgi classical route. In animals, one of the pathways proposed for alternative protein secretion involves the release of exosomes to the extracellular space. Although this pathway has not been dissected in plants some indirect evidence is emerging. We have reported that apoplastic fractions of sunflower seeds contain exosome-like vesicles. Besides, these vesicles are enriched in the lectin Helja, which is immunolocalized in the extracellular space even if it the protein has no predicted signal peptide. Here we show that Helja is not glycosylated and its secretion is insensitive to brefeldin A, two of the major characteristics to discard ER/Golgi-mediated protein transport. Moreover, the levels of Helja in sunflower extracellular vesicles are not affected by brefeldin A treatment. Our results suggest that Helja could be exported through an exosome-mediated pathway and point out that this mechanism may be responsible for the secretion of at least part of the leaderless proteins detected in the extracellular compartment of plants.


Asunto(s)
Exosomas/metabolismo , Espacio Extracelular/metabolismo , Helianthus/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Brefeldino A/farmacología , Retículo Endoplásmico/fisiología , Glicosilación , Aparato de Golgi/fisiología , Helianthus/efectos de los fármacos , Señales de Clasificación de Proteína/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas , Semillas/efectos de los fármacos , Semillas/metabolismo
20.
Plant Signal Behav ; 7(3): 416-21, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22476454

RESUMEN

During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4-64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination.


Asunto(s)
Arabidopsis/metabolismo , Semillas/metabolismo , Arabidopsis/efectos de los fármacos , Brefeldino A/farmacología , Pared Celular/metabolismo , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Pectinas/metabolismo , Semillas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...