Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Diabetes ; 14(2): 76-91, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36926659

RESUMEN

Insulin is a hormone secreted by pancreatic ß cells. The concentration of glucose in circulation is proportional to the secretion of insulin by these cells. In target cells, insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein kinase B, inducing different mechanisms depending on the cell type. In the liver it activates the synthesis of glycogen, in adipose tissue and muscle it allows the capture of glucose, and in the hypothalamus, it regulates thermogenesis and appetite. Defects in insulin function [insulin resistance (IR)] are related to the development of neurodegenerative diseases in obese people. Furthermore, in obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-glycemia and IR further, becoming a vicious circle in which the patient cannot regulate their need to eat. Uncontrolled calorie intake induces an increase in reactive oxygen species, overcoming cellular antioxidant defenses (oxidative stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, that induce phos-phorylation in serine residues in the insulin receptor, which blocks the insulin signaling pathway, continuing the mechanism of IR. The brain and pancreas are organs mainly affected by oxidative stress. The use of drugs that regulate food intake and improve glucose metabolism is the conventional therapy to improve the quality of life of these patients. Currently, the use of antioxidants that regulate oxidative stress has given good results because they reduce oxidative stress and inflammatory processes, and they also have fewer side effects than synthetic drugs.

2.
Heliyon ; 8(11): e11405, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387436

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype due to its greater invasive capacity and non-response to hormone therapy. Several species of the Ficus genus have been used as an alternative to traditional medicine against malignant diseases. Previously, leaf extracts from Ficus crocata (Miq.) Mart. ex Miq. (F. crocata) showed antiproliferative activity in vitro against breast and cervical tumor cells without having a cytotoxic effect on non-tumor cell lines. The purpose of the study was to evaluate the effect of hexane (Hex-EFc), dichloromethane (Dic-EFc), and acetone (Ace-EFc) extracts from F. crocata on the proliferative and invasive capacity of breast cancer cells MCF-7 and MDA-MB-231. Materials and methods: The phytochemical profile was carried out by gas chromatography-mass spectrometry (GC-MS). Cell proliferation, migration, and invasion were determined by MTT, wound closure, and transwell assays, respectively. MMPs activity was analyzed using gelatin zymography, and fluorescence microscopy was used to visualize F-actin distribution. Results: Hex-EFc, Dic-EFc, and Ace-EFc showed cytotoxic activity on MDA-MB-231 tumor cells and, to a lesser extent, on MCF-7 cells, without presenting cytotoxicity at the same concentrations in MCF-10A non-tumor cells. Dic-EFc and Ace-EFc (5-10 µg/mL) reduced the migration capacity of MCF-7 and MDA-MB-231 cells. Interestingly, exposure to Dic-EFc and Ace-EFc (5-10 µg/mL) inhibited the invasive ability of MDA-MB-231 cells, reducing the secretion and activity of MMP-2 and MMP-9, as well as the F-actin distribution. Conclusions: Dic-EFc and Ace-EFc at low concentrations decreased breast cancer cell proliferation and invasiveness, mainly of MDA-MB-231 cells. The above supports the potential use of compounds from leaf extracts of F. crocata in neoadjuvant therapy to reduce the progression of breast cancer tumors, mainly triple-negative tumors.

3.
Plants (Basel) ; 10(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478134

RESUMEN

Oxidative stress causes several chronic diseases including cancer. Some chemotherapeutic agents are not selective against tumor cells, causing oxidative stress in non-tumor cells. This study aimed to evaluate the cytotoxic effect of acetone extract of Ficus crocata (Miq.) Mart. ex Miq. (F. crocata) leaves (Ace-EFc) on cervical cancer cells, as well as its protective effect on hydrogen peroxide (H2O2)-induced lipoperoxidation and cytotoxicity in non-tumor HaCaT cells. Antioxidant activity was determined using the DPPH and ABTS radicals. Cell viability and lipoperoxidation were determined with MTT and 1-methyl-2-phenylindole assays, respectively. A model of H2O2-induced cytotoxicity and oxidative damage in HaCaT cells was established. HaCaT cells were exposed to the extract before or after exposure to H2O2, and oxidative damage and cell viability were evaluated. Ace-EFc inhibited the DPPH and ABTS radicals and showed a cytotoxic effect on SiHa and HeLa cells. Furthermore, the extract treatment had a protective effect on hydrogen peroxide-induced lipoperoxidation and cytotoxicity, avoiding the increase in MalonDiAldehyde (MDA) levels and the decrease in cell viability (p < 0.001). These results suggest that the metabolites of F. crocata leaves possess antioxidant and cytoprotective activity against oxidative damage. Thus, they could be useful for protecting cells from conditions that cause oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...