Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(1): e0279491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36630378

RESUMEN

Many tropical wet forests are species-rich and have relatively even species frequency distributions. But, dominance by a single canopy species can also occur in tropical wet climates and can remain stable for centuries. These are uncommon globally, with the African wet tropics supporting more such communities than the Neotropics or Southeast Asia. Differences in regional evolutionary histories are implied by biogeography: most of Africa's monodominance-forming species are Amherstieae-tribe legumes; monodominance in Neotropical forests occur among diverse taxonomic groups, often legumes, but rarely Amherstieae, and monodominance in Southeast Asian forests occurs mostly among Dipterocarpaceae species. African monodominant forests have been characterized ecologically and taxonomically, but their deep-time history is unknown despite their significant presence and bottom-up ecological influence on diversity. Herein we describe fossil leaflets of Englerodendron mulugetanum sp. nov., an extinct species of the extant genus Englerodendron (Berlinia Clade, Amherstieae, Detarioideae) from the 21.73 Ma Mush Valley site in Ethiopia. We also document a detailed study of associated legume pollen, which originate from a single taxon sharing characters with more than one extant descendant. Taxonomically, the pollen is most comparable to that from some extant Englerodendron species and supports a likely affiliation with the Englerodendron macrofossils. The Mush Valley site provides the first fossil evidence of a monodominant tropical forest in Africa as represented by leaflets and pollen. Previous studies documented >2400 leaves and leaflets from localities at six stratigraphic levels spanning 50,000-60,000 years of nearly continuous deposition within seven meters of section; all but the basal level contain ≥ 50% E. mulugetanum leaflets. Modern leaf litter studies in African mixed vs. monodominant forests indicates the likelihood of monodominance in the forests that surrounded the Mush paleolake, particularly after the basal level. Thus, we provide an early case for monodominance within the Amherstieae legumes in Africa.


Asunto(s)
Fabaceae , Etiopía , Árboles , Bosques , Evolución Biológica , Verduras , Clima Tropical
2.
Mol Ecol ; 29(21): 4170-4185, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32881172

RESUMEN

Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.


Asunto(s)
Flujo Génico , Hibridación Genética , Brasil , Genoma , Filogenia
3.
Mol Phylogenet Evol ; 146: 106752, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32028029

RESUMEN

The legume subfamily Detarioideae is exceptionally diverse in tropical Africa and Madagascar, compared to South America or Asia, a trend contrary to that shown by most other pantropical plant groups. We aim to elucidate the process of diversification giving rise to these high diversity levels by focussing our investigations on the Daniellia clade, which is present in both Africa and Madagascar. The Daniellia clade is an early-diverging lineage of subfamily Detarioideae (Leguminosae; pea family) and consists of three genera: Daniellia, Brandzeia and Neoapaloxylon. The species belonging to this group exhibit a wide range of habitat types. The Madagascar endemics Brandzeia (1 species) and Neoapaloxylon (3 species) occupy dry woodlands and arid succulent habitats respectively. Daniellia alsteeniana and D. oliveri are found in savannahs while the remaining eight species within Daniellia all occupy rainforest habitats. Phylogenetic analyses were generated from a dense, multi-individual species level sampling of the clade. Divergence time estimates were carried out using a molecular clock method to investigate biogeographical patterns and shifts in habitat types within the Daniellia clade, and conservation assessments were conducted to determine the levels of extinction risks these species are facing. We estimate that the Daniellia clade first emerged during the Early Eocene from an ancestor present in the rainforests of North Africa at that time, reflecting an ancestral habitat preference. There was a first major split over the course of the Eocene, giving rise to both African rainforest and Madagascan savannah lineages. With the emergence of a drier climate and vegetation type in Africa during the Eocene, it is likely that a dry-climate adapted lineage from the Daniellia clade ancestor could have dispersed through suitable savannah or woodland regions to reach Madagascar, subsequently giving rise to the savannah-adapted ancestor of Brandzeia and Neoapaloxylon in the Early Miocene. The African rainforest lineage gave rise to the genus Daniellia, which is postulated to have first diversified in the Middle Miocene, while savannah species of Daniellia emerged independently during the Pliocene, coinciding with the global rise of C4-dominated grasslands. More than half of the species in the Daniellia clade are near threatened or threatened, which highlights the need to understand the threats of anthropogenic pressures and climate change these species are facing to prioritise their conservation.


Asunto(s)
Fabaceae/clasificación , África , Ecosistema , Fabaceae/genética , Pradera , Madagascar , Filogenia , Filogeografía , Bosque Lluvioso , Clima Tropical
4.
Mol Phylogenet Evol ; 137: 156-167, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31075505

RESUMEN

Detarioideae is well known for its high diversity of floral traits, including flower symmetry, number of organs, and petal size and morphology. This diversity has been characterized and studied at higher taxonomic levels, but limited analyses have been performed among closely related genera with contrasting floral traits due to the lack of fully resolved phylogenetic relationships. Here, we used four representative transcriptomes to develop an exome capture (target enrichment) bait for the entire subfamily and applied it to the Anthonotha clade using a complete data set (61 specimens) representing all extant floral diversity. Our phylogenetic analyses recovered congruent topologies using ML and Bayesian methods. Anthonotha was recovered as monophyletic contrary to the remaining three genera (Englerodendron, Isomacrolobium and Pseudomacrolobium), which form a monophyletic group sister to Anthonotha. We inferred a total of 35 transitions for the seven floral traits (pertaining to flower symmetry, petals, stamens and staminodes) that we analyzed, suggesting that at least 30% of the species in this group display transitions from the ancestral condition reconstructed for the Anthonotha clade. The main transitions were towards a reduction in the number of organs (petals, stamens and staminodes). Despite the high number of transitions, our analyses indicate that the seven characters are evolving independently in these lineages. Petal morphology is the most labile floral trait with a total of seven independent transitions in number and seven independent transitions to modification in petal types. The diverse petal morphology along the dorsoventral axis of symmetry within the flower is not associated with differences at the micromorphology of petal surface, suggesting that in this group all petals within the flower might possess the same petal identity at the molecular level. Our results provide a solid evolutionary framework for further detailed analyses of the molecular basis of petal identity.


Asunto(s)
Biodiversidad , Fabaceae/genética , Flores/anatomía & histología , Genómica , Filogenia , Teorema de Bayes , Fabaceae/anatomía & histología , Flores/ultraestructura , Fenotipo , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/ultraestructura
5.
Sci Rep ; 8(1): 6884, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720687

RESUMEN

Detarioideae (81 genera, c. 760 species) is one of the six Leguminosae subfamilies recently reinstated by the Legume Phylogeny Working Group. This subfamily displays high morphological variability and is one of the early branching clades in the evolution of legumes. Using previously published and newly generated sequences from four loci (matK-trnK, rpL16, trnG-trnG2G and ITS), we develop a new densely sampled phylogeny to assess generic relationships and tribal delimitations within Detarioideae. The ITS phylogenetic trees are poorly resolved, but the plastid data recover several strongly supported clades, which also are supported in a concatenated plastid + ITS sequence analysis. We propose a new phylogeny-based tribal classification for Detarioideae that includes six tribes: re-circumscribed Detarieae and Amherstieae, and the four new tribes Afzelieae, Barnebydendreae, Saraceae and Schotieae. An identification key and descriptions for each of the tribes are also provided.


Asunto(s)
Fabaceae/clasificación , Filogenia , Fabaceae/genética , Genes de Plantas , Plastidios/genética
6.
Mol Phylogenet Evol ; 126: 279-292, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29702213

RESUMEN

The flora of the Neotropics is unmatched in its diversity, however the mechanisms by which diversity has accumulated are debated and largely unclear. The Brownea clade (Leguminosae) is a characteristic component of the Neotropical flora, and the species within it are diverse in their floral morphology, attracting a wide variety of pollinators. This investigation aimed to estimate species divergence times and infer relationships within the group, in order to test whether the Brownea clade followed the 'cradle' or 'museum' model of diversification, i.e. whether species evolved rapidly over a short time period, or gradually over many millions of years. We also aimed to trace the spatio-temporal evolution of the clade by estimating ancestral biogeographical patterns in the group. We used BEAST to build a dated phylogeny of 73 Brownea clade species using three molecular markers (ITS, trnK and psbA-trnH), resulting in well-resolved phylogenetic relationships within the clade, as well as robust divergence time estimates from which we inferred diversification rates and ancestral biogeography. Our analyses revealed an Eocene origin for the group, after which the majority of diversification happened in Amazonia during the Miocene, most likely concurrent with climatic and geological changes caused by the rise of the Andes. We found no shifts in diversification rate over time, suggesting a gradual accumulation of lineages with low extinction rates. These results may help to understand why Amazonia is host to the highest diversity of tree species on Earth.


Asunto(s)
Evolución Biológica , Fabaceae/clasificación , Árboles/clasificación , Clima Tropical , Biodiversidad , Calibración , Fósiles , Filogenia , Filogeografía , América del Sur , Factores de Tiempo
7.
New Phytol ; 214(4): 1722-1735, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28323330

RESUMEN

African tropical forests are generally considered less diverse than their Neotropical and Asian counterparts. By contrast, the Detarioideae is much more diverse in Africa than in South America and Asia. To better understand the evolution of this contrasting diversity pattern, we investigated the biogeographical and ecological origin of this subfamily, testing whether they originated in dry biomes surrounding the Tethys Seaway as currently hypothesized for many groups of Leguminosae. We constructed the largest time-calibrated phylogeny for the subfamily to date, reconstructed ancestral states for geography and biome/habitat, estimated diversification and extinction rates, and evaluated biome/habitat and geographic shifts in Detarioideae. The ancestral habitat of Detarioideae is postulated to be a primary forest (terra firme) originated in Africa-South America, in the early Palaeocene, after which several biome/habitat and geographic shifts occurred. The origin of Detarioideae is older than previous estimates, which postulated a dry (succulent) biome origin according to the Tethys Seaway hypothesis, and instead we reveal a post Gondwana and terra firme origin for this early branching clade of legumes. Detarioideae include some of the most dominant trees in evergreen forests and have likely played a pivotal role in shaping continental African forest diversity.


Asunto(s)
Evolución Biológica , Fabaceae/fisiología , Filogenia , África , Ecosistema , Extinción Biológica , Filogeografía , Árboles , Clima Tropical
8.
PLoS One ; 7(7): e41526, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911808

RESUMEN

OBJECTIVES: Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. METHODOLOGY: Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. RESULTS/CONCLUSIONS: Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type offered more detailed information on which conservation efforts can be focused.


Asunto(s)
Biodiversidad , Fabaceae/crecimiento & desarrollo , Modelos Biológicos , África Central , África Occidental , Geografía , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...