Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36829597

RESUMEN

Organisms are unique physical entities in which information is stored and continuously processed. The digital nature of DNA sequences enables the construction of a dynamic information reservoir. However, the distinction between the hardware and software components in the information flow is crucial to identify the mechanisms generating specific genomic signatures. In this work, we perform a bibliometric analysis to identify the different purposes of looking for particular patterns in DNA sequences associated with a given phenotype. This study has enabled us to make a conceptual breakdown of the genomic signature and differentiate the leading applications. On the one hand, it refers to gene expression profiling associated with a biological function, which may be shared across taxa. This signature is the focus of study in precision medicine. On the other hand, it also refers to characteristic patterns in species-specific DNA sequences. This interpretation plays a key role in comparative genomics, identifying evolutionary relationships. Looking at the relevant studies in our bibliographic database, we highlight the main factors causing heterogeneities in genome composition and how they can be quantified. All these findings lead us to reformulate some questions relevant to evolutionary biology.

2.
Phys Rev E ; 104(6-2): 065111, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030886

RESUMEN

We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.

3.
Sci Rep ; 10(1): 19073, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149190

RESUMEN

Progressive evolution, or the tendency towards increasing complexity, is a controversial issue in biology, which resolution entails a proper measurement of complexity. Genomes are the best entities to address this challenge, as they encode the historical information of a species' biotic and environmental interactions. As a case study, we have measured genome sequence complexity in the ancient phylum Cyanobacteria. To arrive at an appropriate measure of genome sequence complexity, we have chosen metrics that do not decipher biological functionality but that show strong phylogenetic signal. Using a ridge regression of those metrics against root-to-tip distance, we detected positive trends towards higher complexity in three of them. Lastly, we applied three standard tests to detect if progressive evolution is passive or driven-the minimum, ancestor-descendant, and sub-clade tests. These results provide evidence for driven progressive evolution at the genome-level in the phylum Cyanobacteria.


Asunto(s)
Cianobacterias/genética , Evolución Molecular , Genoma Bacteriano , Cianobacterias/clasificación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...