Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 16(6): 599-608, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915732

RESUMEN

Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Asesinas Naturales/fisiología , Subgrupos Linfocitarios/fisiología , Células Progenitoras Linfoides/fisiología , Receptores Notch/metabolismo , Animales , Células de la Médula Ósea/fisiología , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Femenino , Proteínas de Homeodominio/genética , Inmunidad Innata/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Notch/genética , Transcriptoma
2.
BMC Cancer ; 15: 22, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25632947

RESUMEN

BACKGROUND: A breast cancer susceptibility locus has been mapped to the gene encoding TOX3. Little is known regarding the expression pattern or biological role of TOX3 in breast cancer or in the mammary gland. Here we analyzed TOX3 expression in murine and human mammary glands and in molecular subtypes of breast cancer, and assessed its ability to alter the biology of breast cancer cells. METHODS: We used a cell sorting strategy, followed by quantitative real-time PCR, to study TOX3 gene expression in the mouse mammary gland. To study the expression of this nuclear protein in human mammary glands and breast tumors, we generated a rabbit monoclonal antibody specific for human TOX3. In vitro studies were performed on MCF7, BT474 and MDA-MB-231 cell lines to study the effects of TOX3 modulation on gene expression in the context of breast cancer cells. RESULTS: We found TOX3 expression in estrogen receptor-positive mammary epithelial cells, including progenitor cells. A subset of breast tumors also highly expresses TOX3, with poor outcome associated with high expression of TOX3 in luminal B breast cancers. We also demonstrate the ability of TOX3 to alter gene expression in MCF7 luminal breast cancer cells, including cancer relevant genes TFF1 and CXCR4. Knockdown of TOX3 in a luminal B breast cancer cell line that highly expresses TOX3 is associated with slower growth. Surprisingly, TOX3 is also shown to regulate TFF1 in an estrogen-independent and tamoxifen-insensitive manner. CONCLUSIONS: These results demonstrate that high expression of this protein likely plays a crucial role in breast cancer progression. This is in sharp contrast to previous studies that indicated breast cancer susceptibility is associated with lower expression of TOX3. Together, these results suggest two different roles for TOX3, one in the initiation of breast cancer, potentially related to expression of TOX3 in mammary epithelial cell progenitors, and another role for this nuclear protein in the progression of cancer. In addition, these results can begin to shed light on the reported association of TOX3 expression and breast cancer metastasis to the bone, and point to TOX3 as a novel regulator of estrogen receptor-mediated gene expression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Animales , Proteínas Reguladoras de la Apoptosis , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ligandos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Pronóstico , Receptores de Progesterona/metabolismo , Transactivadores
3.
J Immunol ; 187(11): 5931-40, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22021617

RESUMEN

The factors that regulate thymic development of the CD4(+) T cell gene program remain poorly defined. The transcriptional regulator ThPOK is a dominant factor in CD4(+) T cell development, which functions primarily to repress the CD8 lineage fate. Previously, we showed that nuclear protein TOX is also required for murine CD4(+) T cell development. In this study, we sought to investigate whether the requirement for TOX was solely due to a role in ThPOK induction. In apparent support of this proposition, ThPOK upregulation and CD8 lineage repression were compromised in the absence of TOX, and enforced ThPOK expression could restore some CD4 development. However, these "rescued" CD4 cells were defective in many aspects of the CD4(+) T cell gene program, including expression of Id2, Foxo1, and endogenous Thpok, among others. Thus, TOX is necessary to establish the CD4(+) T cell lineage gene program, independent of its influence on ThPOK expression.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/genética , Linaje de la Célula , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Animales , Linfocitos T CD4-Positivos/citología , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Separación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Proteínas de Homeodominio/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/inmunología
4.
Nat Immunol ; 11(10): 945-52, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20818394

RESUMEN

TOX is a DNA-binding factor required for development of CD4(+) T cells, natural killer T cells and regulatory T cells. Here we document that both natural killer (NK) cell development and lymphoid tissue organogenesis were also inhibited in the absence of TOX. We found that the development of lymphoid tissue-inducer cells, a rare subset of specialized cells that has an integral role in lymphoid tissue organogenesis, required TOX. Tox was upregulated considerably in immature NK cells in the bone marrow, consistent with the loss of mature NK cells in the absence of this nuclear protein. Thus, many cell lineages of the immune system share a TOX-dependent step for development.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/inmunología , Proteínas de Homeodominio/fisiología , Células Asesinas Naturales/inmunología , Tejido Linfoide/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Células de la Médula Ósea/inmunología , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Proteínas del Grupo de Alta Movilidad/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
J Neurosci ; 28(10): 2459-70, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18322091

RESUMEN

Mammalian acetylcholinesterase (AChE) gene expression is exquisitely regulated in target tissues and cells during differentiation. An intron located between the first and second exons governs a approximately 100-fold increase in AChE expression during myoblast to myotube differentiation in C2C12 cells. Regulation is confined to 255 bp of evolutionarily conserved sequence containing functional transcription factor consensus motifs that indirectly interact with the endogenous promoter. To examine control in vivo, this region was deleted by homologous recombination. The knock-out mouse is virtually devoid of AChE activity and its encoding mRNA in skeletal muscle, yet activities in brain and spinal cord innervating skeletal muscle are unaltered. The transcription factors MyoD and myocyte enhancer factor-2 appear to be responsible for muscle regulation. Selective control of AChE expression by this region is also found in hematopoietic lineages. Expression patterns in muscle and CNS neurons establish that virtually all AChE activity at the mammalian neuromuscular junction arises from skeletal muscle rather than from biosynthesis in the motoneuron cell body and axoplasmic transport.


Asunto(s)
Acetilcolinesterasa/biosíntesis , Elementos de Facilitación Genéticos/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Intrones/genética , Músculo Esquelético/enzimología , Regiones Promotoras Genéticas/genética , Acetilcolinesterasa/genética , Animales , Transporte Axonal/genética , Secuencia de Bases , Línea Celular , Embrión de Pollo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas Motoras/enzimología , Unión Neuromuscular/enzimología
6.
Chem Biol Interact ; 157-158: 79-86, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16289062

RESUMEN

AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B. delaTorre, P. Taylor, Knockout mice with deletions of alternatively spliced exons of Acetylcholinesterase, in: N.C. Inestrosa, E.O. Campus (Eds.), VII International Meeting on Cholinesterases, Pucon-Chile Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects. P. Universidad Catholica de Chile-FONDAP Biomedicina, 2004, pp. 43-48; R.Y.Y. Chan, C. Boudreau-Larivière, L.A. Angus, F. Mankal, B.J. Jasmin, An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 96 (1999) 4627-4632], is also presented. The intronic region was floxed and then deleted by mating with Ella-cre transgenic mice. The deletion of this region produced a dramatic phenotype; a mouse with near normal AChE expression in brain and other CNS tissues, but no AChE expression in muscle. Phenotype and AChE tissue activities are compared with the total AChE knockout mouse [W. Xie, J.A. Chatonnet, P.J. Wilder, A. Rizzino, R.D. McComb, P. Taylor, S.H. Hinrichs, O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293 (3) (2000) 896-902].


Asunto(s)
Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Exones/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Eliminación de Secuencia/genética , Acetilcolinesterasa/deficiencia , Animales , Ratones , Ratones Transgénicos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...