Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(44): e202311255, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37695637

RESUMEN

Herein we report the first example of a supramolecular cage that works as a catalytic molecular reactor to perform transformations over fullerenes in aqueous medium. Taking advantage of the ability of metallo-organic Pd(II)-subphthalocyanine (SubPc) capsules to form stable host:guest complexes with C60 , we have prepared a water-soluble cage that provides a hydrophobic environment for conducting cycloadditions over encapsulated C60 , namely, Diels-Alder reactions with anthracene. Indeed, the presence of catalytic amounts of SubPc cage dissolved in water promotes co-encapsulation of insoluble C60 and anthracene substrates, allowing the reaction to occur inside the cavity under mild conditions. The lower stability of the host:guest complex with the resulting C60 cycloadduct facilitates its displacement by pristine C60 , which grants catalytic turnover. Moreover, bis-addition compounds are regioselectively formed inside the cage when using excess anthracene.

2.
J Med Chem ; 66(5): 3448-3459, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36802644

RESUMEN

Pt(II)-BODIPY complexes combine the chemotherapeutic activity of Pt(II) with the photocytotoxicity of BODIPYs. Additional conjugation with targeting ligands can boost the uptake by cancer cells that overexpress the corresponding receptors. We describe two Pt(II) triangles, 1 and 2, built with pyridyl BODIPYs functionalized with glucose (3) or triethylene glycol methyl ether (4), respectively. Both 1 and 2 showed higher singlet oxygen quantum yields than 3 and 4, due to the enhanced singlet-to-triplet intersystem crossing. To evaluate the targeting effect of the glycosylated derivative, in vitro experiments were performed using glucose transporter 1 (GLUT1)-positive HT29 and A549 cancer cells, and noncancerous HEK293 cells as control. Both 1 and 2 showed higher cellular uptake than 3 and 4. Specifically, 1 was selective and highly cytotoxic toward HT29 and A549 cells. The synergistic chemo- and photodynamic behavior of the metallacycles was also confirmed. Notably, 1 exhibited superior efficacy toward the cisplatin-resistant R-HepG2 cells.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Humanos , Antineoplásicos/farmacología , Células HEK293 , Fármacos Fotosensibilizantes/farmacología
3.
Chem Sci ; 13(32): 9249-9255, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36092995

RESUMEN

The internal cavity formed by a dimeric subphthalocyanine (SubPc) capsule (SubPc2Pd3, 2), ensembled by coordination of pyridyl substituents in the monomeric SubPc 1 to Pd centers, has proved an optimal space for the complexation of C60 fullerene. Taking advantage of the intense absorption of green light of the SubPc component at around 550 nm, we have tested different green-light induced photoredox addition reactions over the double bonds of guest C60. Both addition of amine radicals, generated by reductive quenching of the excited state of 2 by aromatic trimethylsilylamines, and addition of trifluoroethyl radicals, obtained from oxidative quenching of the photosensitizer, have successfully taken place with good yields in the 2:C60 host:guest complex. On the other hand, both the photoredox reactions result in much lower yields when the monomeric pyridyl-SubPc is used as a photocatalyst, demonstrating that encapsulation results in a strong acceleration of the reaction. Importantly, this is the first example of the use of a confined microenvironment to trigger photoredox chemical transformations of fullerenes.

4.
ChemMedChem ; 16(16): 2441-2451, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33900022

RESUMEN

Photodynamic therapy (PDT) is becoming a promising way to treat various kinds of cancers, with few side effects. Porphyrinoids are the most relevant photosensitizers (PS) in PDT, because they present high extinction coefficients, biocompatibility, and excellent photochemical behavior. To maximize therapeutic effects, polymer-PS conjugates, and PS-loaded nanoparticles have been developed, with insights in improving tumor delivery. However, some drawbacks such as non-biodegradability, multistep fabrication, and low reagent loadings limit their clinical application. A novel strategy, noted by some authors as the "one-for-all" approach, is emerging to circumvent the use of additional delivery agents. This approach relies on the self-assembly of amphiphilic PS to fabricate nanostructures with improved transport properties. In this review we focus on different rational designs of porphyrinoid PS to achieve some of the following attributes in nanoassembly: i) selective uptake, through the incorporation of recognizable biological vectors; ii) responsiveness to stimuli; iii) combination of imaging and therapeutic functions; and iv) multimodal therapy, including photothermal or chemotherapy abilities.


Asunto(s)
Antineoplásicos/farmacología , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Humanos , Estructura Molecular , Neoplasias/patología , Fármacos Fotosensibilizantes/química , Porfirinas/química
5.
Chemistry ; 27(15): 4955-4963, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33442909

RESUMEN

Herein, the photodynamic activity of phthalocyanine (pc)-assembled nanoparticles against bacterial strains is demonstrated. The photosensitizers (PS) studied in this work are two chiral ZnII Pcs (PS-1 and PS-2), with an AABB geometry (where A and B refer to differently substituted isoindole constituents). They contain differently functionalized, chiral binaphthyloxy-linked A isoindole units, which determine the hydrophobicity of the system, and cationic methyl pyridinium moieties in the other two isoindoles to embody hydrophilicity. Both compounds have the ability to self-assemble into nanoparticles in aqueous media and have proved efficient in the photo-inactivation of Staphylococcus aureus and Escherichia coli, selected as models of Gram-positive and Gram-negative bacteria. The average size of the nanoparticles was determined by substitution at the binaphthyl core and, in turn, influences the toxicity of the PS. Thus, PS-1, presenting a nonsubstituted binaphthyl core, forms larger nanoparticles with a larger cationic surface than the octyl-functionalized PS-2. Although both PSs present similar structure and photophysical features, the self-assembled nanostructures of PS-1 are more effective at killing both types of strain, showing an outstanding photo-inactivation capacity with the Gram-negative E. coli.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Fotoquimioterapia , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Indoles , Isoindoles , Fármacos Fotosensibilizantes
6.
J Phys Chem Lett ; 12(4): 1182-1188, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480697

RESUMEN

Zinc porphyrin solar cell dyes with donor-π-acceptor architectures combine light absorber (π), electron-donor, and electron-acceptor moieties inside a single molecule with atomic precision. The donor-π-acceptor design promotes the separation of charge carriers following optical excitation. Here, we probe the excited-state electronic structure within such molecules by combining time-resolved X-ray absorption spectroscopy at the N K-edge with first-principles time-dependent density functional theory (TD-DFT) calculations. Customized Zn porphyrins with strong-donor triphenylamine groups or weak-donor tri-tert-butylbenzene groups were synthesized. Energetically well-separated N K-edge absorption features simultaneously probe the excited-state electronic structure from the perspectives of the macrocycle and triphenylamine N atoms. New absorption transitions between the macrocycle N atoms and the excited-state HOMO vacancy are observed, and the triphenylamine associated absorption feature blue-shifts, consistent with partial oxidation of the donor groups in the excited state.

7.
Molecules ; 25(1)2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31947934

RESUMEN

We have previously demonstrated that singlet oxygen photosensitization abilities of Zn(II) phthalocyanines (Zn(II)Pcs) are enhanced through α-functionalization with bulky fluorinated substituents (i.e., bis(trifluoromethyl)phenyl units) at facing positions of ABAB Zn(II)Pcs, where A and B refer to differently functionalized isoindoles. In this work, we have prepared the Zn(II)Pc ABAB 1 endowed with hydrophilic triethylene glycol monomethyl ether (i.e., at the A isoindoles) to provide solubility in aqueous media, together with its A3B and A4 counterparts, and compared their ability to behave as photosensitizers for photodynamic therapy. All photophysical data, aggregation studies and preliminary in vitro biological assays in cell cultures of SCC-13 (squamous cell carcinoma) and HeLa (cervical cancer cells), have proved ABAB 1 as the best photosensitizer of the series.


Asunto(s)
Indoles/química , Indoles/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isoindoles , Polietilenglicoles/química , Oxígeno Singlete/química , Solubilidad
8.
Eur J Med Chem ; 187: 111957, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31864170

RESUMEN

Herein, we report the synthesis and characterization of new amphiphilic phthalocyanines (Pcs), the study of their singlet oxygen generation capabilities, and biological assays to determine their potential as photosensitizers for photodynamic inactivation of bacteria. In particular, Pcs with an ABAB geometry (where A and B refer to differently substituted isoindole constituents) have been synthesized. These molecules are endowed with bulky bis(trifluoromethylphenyl) groups in two facing isoindoles, which hinder aggregation and favour singlet oxygen generation, and pyridinium or alkylammonium moieties in the other two isoindoles. In particular, two water-soluble Pc derivatives (PS-1 and PS-2) have proved to be efficient in the photoinactivation of S. aureus and E. coli, selected as models of Gram-positive and Gram-negative bacteria.


Asunto(s)
Antibacterianos/farmacología , Flúor/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Indoles/farmacología , Fármacos Fotosensibilizantes/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Cationes/química , Cationes/farmacología , Relación Dosis-Respuesta a Droga , Flúor/química , Indoles/química , Isoindoles , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Relación Estructura-Actividad
9.
Org Biomol Chem ; 17(32): 7448-7454, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31355402

RESUMEN

In-depth, systematic photophysical studies have been performed on a series of ABAB, A3B and A4 ZnPcs functionalized with a varying number of bis(trifluoromethyl)phenyl units (i.e. at the B isoindoles) and other electron-withdrawing/electron-donating moieties (i.e. at the A isoindoles), to determine the influence of the susbtitution pattern on the aggregation features, fluorescence quantum yields and singlet oxygen (1O2) generation abilities of these molecules. As a general trend, the larger the number of bis(trifluoromethyl)phenyl units (i.e.ABAB crosswise functionalized ZnPcs), the lower the fluorescence quantum yield and the higher the 1O2 photosensitization. On the other hand, the electronic character of the substituents at the A isoindoles do not seem to have a clear effect on the photophysical properties of these ABAB ZnPcs. Overall, 1O2 quantum yields determined by the direct observation of the 1O2 phosphorescence are very high, with values ranging from 1 to 0.74 in THF solutions.

10.
Chem Soc Rev ; 48(10): 2738-2766, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31033978

RESUMEN

Organic-inorganic lead halide perovskite absorbers in combination with electron and hole transporting selective contacts result in power conversion efficiencies of over 23% under AM 1.5 sun conditions. The advantage of perovskite solar cells is their simple fabrication through solution-processing methods either in n-i-p or p-i-n configurations. Using TiO2 or SnO2 as an electron transporting layer, a compositionally engineered perovskite as an absorber layer, and Spiro-OMeTAD as a HTM, several groups have reported over 20% efficiency. Though perovskite solar cells reached comparable efficiency to that of crystalline silicon ones, their stability remains a bottleneck for commercialization partly due to the use of doped Spiro-OMeTAD. Several organic and inorganic hole transporting materials have been explored to increase the stability and power conversion efficiency of perovskite solar cells. IIn this review, we analyse the stability and efficiency of perovskite solar cells incorporating phthalocyanine and porphyrin macrocycles as hole- and electron transporting materials. The π-π stacking orientation of these macrocycles on the perovskite surface is important in facilitating a vertical charge transport, resulting in high power conversion efficiency.

11.
Chempluschem ; 84(6): 673-679, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31944006

RESUMEN

We describe here the preparation of a series of trans-ABAB Zn(II) phthalocyanines (ZnPcs, which combine several interesting features. First, these compounds present high solubility and hindered aggregation, due to the functionalization of two facing isoindole constituents (B) of the ZnPc with bis(trifluoromethylphenyl) units. Second, the other two isoindoles (A) bear extra-annulated phthalimide units containing different substituents in the nitrogen positions, this feature results in a collinear arrangement of a variety of functional groups. Some of these collinearly functionalized ZnPcs are interesting building blocks for constructing either homo- or heteroarrays containing ZnPc units. Furthermore, the amphiphilic nature of some members of the series renders them interesting candidates for photosensitization of singlet oxygen. Photophysical studies on a model compound of the series have shown that these molecules are efficient singlet oxygen photosensitizers in both polar and apolar media, with 1 O2 quantum yields (φΔ ) as high as 0.74.

12.
Angew Chem Int Ed Engl ; 58(12): 4056-4060, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30589190

RESUMEN

We designed and synthesized a series of novel electron-accepting zinc(II)phthalocyanines (ZnPc) and probed them in p-type dye sensitized solar cells (p-DSSCs) by using CuO as photocathodes. By realizing the right balance between interfacial charge separation and charge recombination, optimized fill factors (FFs) of 0.43 were obtained. With a control over fill factors in p-DSSCs in hand we turned our attemtion to t-DSSCs, in which we combined for the first time CuO-based p-DSSCs with TiO2 -based n-DSSCs using ZnPc and N719. In the resulting t-DSSCs, the VOC of 0.86 V is the sum of those found in p- and n-DSSCs, while the FF remains around 0.63. It is only the smaller Jsc s in t-DSSCs that limits the efficiency to 0.69 %.

13.
Nanoscale ; 10(47): 22400-22408, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30475370

RESUMEN

We report herein on the design, the synthesis, and the characterization of a panchromatic, charge stabilizing electron donor-acceptor conjugate: (BBPA)3-ZnPor-ZnPc-SubPc 1. Each component, that is, bis(biphenyl)phenylamine (BBPA), Zn(ii) porphyrin (ZnPor), Zn(ii) phthalocyanine ZnPc, and subphthalocyanine (SubPc), has been carefully chosen and modified to enable a cascade of energy and charge transfer processes. On one hand, ZnPor, has been functionalized with three electron-donating BBPA as primary and secondary electron donors and to stabilize the final charge-separated state, and, on the other hand, a perfluorinated SubPc has been selected as ultimate electron acceptor. In addition, the ZnPc unit contains several trifluoromethylphenyl moieties to match its energy levels to those of the other components. In fact, irradiation of the heteroarray 1 triggers a cascade of light harvesting across the entire visible range, unidirectional energy transfer, exergonic charge separating, and short-range charge shifting to afford in 14% quantum yield a (BBPA)3˙+-ZnPor-ZnPc-SubPc˙- charge-separated state. The lifetime of the latter reaches well into the range of tens of nanoseconds.

14.
Chemistry ; 24(70): 18696-18704, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209837

RESUMEN

Two zinc phthalocyanines (ZnPcs) have been equipped with Newkome-type dendritic branches of increasing size and number of terminal carboxylate functional groups. The negatively charged carboxylates render these polyelectrolytes soluble in polar media such as methanol or buffered water. Sonication of the ZnPcs with graphene allowed for pronounced non-covalent binding of the ZnPc moieties on the graphene surface. These hybrid systems were fully characterized via UV/Vis, AFM, TEM, Raman and transient absorption spectroscopy, yielding insights into the electron donating nature of the novel phthalocyanine structures.

15.
Chem Commun (Camb) ; 54(21): 2651-2654, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29473065

RESUMEN

An unprecedented Fe2Pc3 metallo-organic helicate has been assembled using a bidentate phthalocyanine (Pc) ligand, 2-formylpyridine and Fe(OTf)2. This giant helicate has proved itself as a host for large redox-active guests such as fullerene and naphthalenediimide derivatives. Photoactivated electronic interactions between components occur in the host-guest complex.

16.
ChemistryOpen ; 6(1): 121-127, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28168157

RESUMEN

Unique donor-π-acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd-catalyzed cross-coupling reactions with adequate electron-donor and electron-acceptor moieties. These push-pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye-sensitized solar cells has been tested.

17.
Nanoscale ; 8(41): 17963-17975, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27731456

RESUMEN

We introduce a novel and comprehensive approach for the evaluation and interpretation of electrochemical impedance spectroscopy (EIS) measurements in p-type DSSCs. In detail, we correlate both the device performance and EIS figures-of-merit of a series of devices in which, the calcination temperature, film thickness, and electrolyte concentration have been systematically modified. This new approach enables the separation of the different processes across the dye/semiconductor/electrolyte interface, namely the unfavorable charge recombination and the favorable electron injection/regeneration processes. In addition, studies on non-sensitized CuO and NiO electrodes provide insights into their affinity towards a reaction with the electrolyte - CuO is far less reactive towards the polyiodide species. Overall, this work underlines the superior features of CuO with respect to NiO for p-DSSCs and demonstrates a comprehensive optimization of the CuO-based DSSCs with respect to the device architecture by the aid of EIS analysis.

18.
Angew Chem Int Ed Engl ; 54(26): 7688-92, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26081421

RESUMEN

A route is reported for the synthesis of two electron-accepting phthalocyanines featuring linkers with different lengths as sensitizers for p-type dye-sensitized solar cells (DSSCs). Importantly, our devices based on novel nanorod-like CuO photocathodes showed high efficiencies of up to 0.191 %: the highest value reported to date for CuO-based DSSCs.


Asunto(s)
Cobre/química , Espectroscopía Dieléctrica/métodos , Indoles/química , Electrones , Isoindoles , Nanotubos , Energía Solar
19.
Acc Chem Res ; 48(4): 900-10, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25837299

RESUMEN

Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc "companions". Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the well-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions between the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems with tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems showing high charge mobilities. A breakthrough in the Pc-nanocarbon field was the appearance of CNTs and graphene, which opened a new avenue for the preparation of intriguing photoresponsive hybrid ensembles showing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together with their lower reactivity with respect to C60 stemming from their less strained sp(2) carbon networks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, which show improved solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene with the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or few-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform. In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, with a particular emphasis on their photoinduced behavior. We believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together with the increasing knowledge of the factors governing their photophysics, will allow for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materials.

20.
Chem Sci ; 6(5): 3018-3025, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142685

RESUMEN

An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron-hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA