Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7505, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513637

RESUMEN

Dust devils (convective vortices loaded with dust) are common at the surface of Mars, particularly at Jezero crater, the landing site of the Perseverance rover. They are indicators of atmospheric turbulence and are an important lifting mechanism for the Martian dust cycle. Improving our understanding of dust lifting and atmospheric transport is key for accurate simulation of the dust cycle and for the prediction of dust storms, in addition to being important for future space exploration as grain impacts are implicated in the degradation of hardware on the surface of Mars. Here we describe the sound of a Martian dust devil as recorded by the SuperCam instrument on the Perseverance rover. The dust devil encounter was also simultaneously imaged by the Perseverance rover's Navigation Camera and observed by several sensors in the Mars Environmental Dynamics Analyzer instrument. Combining these unique multi-sensorial data with modelling, we show that the dust devil was around 25 m large, at least 118 m tall, and passed directly over the rover travelling at approximately 5 m s-1. Acoustic signals of grain impacts recorded during the vortex encounter provide quantitative information about the number density of particles in the vortex. The sound of a Martian dust devil was inaccessible until SuperCam microphone recordings. This chance dust devil encounter demonstrates the potential of acoustic data for resolving the rapid wind structure of the Martian atmosphere and for directly quantifying wind-blown grain fluxes on Mars.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Polvo/análisis , Viento , Atmósfera
2.
Geophys Res Lett ; 49(17): e2022GL100126, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245893

RESUMEN

Rovers and landers on Mars have experienced local, regional, and planetary-scale dust storms. However, in situ documentation of active lifting within storms has remained elusive. Over 5-11 January 2022 (LS 153°-156°), a dust storm passed over the Perseverance rover site. Peak visible optical depth was ∼2, and visibility across the crater was briefly reduced. Pressure amplitudes and temperatures responded to the storm. Winds up to 20 m s-1 rotated around the site before the wind sensor was damaged. The rover imaged 21 dust-lifting events-gusts and dust devils-in one 25-min period, and at least three events mobilized sediment near the rover. Rover tracks and drill cuttings were extensively modified, and debris was moved onto the rover deck. Migration of small ripples was seen, but there was no large-scale change in undisturbed areas. This work presents an overview of observations and initial results from the study of the storm.

3.
Geophys Res Lett ; 49(17): e2022GL099776, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245894

RESUMEN

Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 µm in diameter and length. From a possible 40-50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3-12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.

5.
Nature ; 605(7911): 653-658, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364602

RESUMEN

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

6.
Space Sci Rev ; 217(3): 48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776548

RESUMEN

NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.

7.
Space Sci Rev ; 217(1): 20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33583960

RESUMEN

Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls ∼ 145 ∘ and 250 ∘ , respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls ∼ 180 ∘ and 270 ∘ , respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (∼east-southeasterly) and nighttime downslope (∼northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms - 1 and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-020-00788-2.

8.
Q J R Meteorol Soc ; 144(Suppl Suppl 1): 206-220, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31007290

RESUMEN

There is currently a gap in satellite observations of the moisture structure during heavy precipitation conditions, since infrared and microwave sounders cannot sense water-vapour structure near the surface in the presence of intense precipitation. Conversely, Global Navigation Satellite System (GNSS) radio occultations (RO) can profile the moisture structure with high precision and vertical resolution, but cannot indicate the presence of precipitation directly. Polarimetric RO (PRO) measurements have been proposed as a method to characterize heavy rain in GNSS RO, by measuring the polarimetric differential phase delay induced by large size hydrometeors. Previous studies have shown that the PRO polarimetric phase shift is sensitive to the path-integrated rain rate under intense precipitation scenarios, but there is no current method to invert PRO measurements into quantitative estimates of the path-averaged rain rate. In this manuscript, a probabilistic inversion approach to the GNSS PRO observables is proposed, where the GPM precipitation products are used for the construction of an a priori look-up table (LUT) database. The performance of the LUTs is assessed for use in the inversion of satellite-based GNSS PRO observations, based on synthetically generated PRO data of actual events, which correspond to co-locations between GNSS RO profiles and the TRMM observations. The synthetic data include end-to-end propagation effects of the polarimetric observables and a simple separation algorithm to isolate the hydrometeor component of the observation. The assessment results in agreement better than ±1 mm/hr between the reference LUT and the actual rain statistics of the synthetic data, proving the suitability of the GPM-based probabilistic inversion tool. These findings indicate that the GNSS PRO products are capable of extending the current GNSS RO ones by associating indications of rain-rate probabilities at different altitudes, at ∼250 m vertical resolution and under intense precipitation scenarios with the standard vertical thermodynamic profiles.

9.
J Geophys Res Planets ; 119(8): 1822-1838, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26213666

RESUMEN

The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m-2 K-1 s-1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

10.
Phys Rev A ; 46(2): 1009-1013, 1992 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9908204
12.
Phys Rev A ; 42(4): 2096-2100, 1990 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9904258
13.
Phys Rev A Gen Phys ; 40(12): 7427-7430, 1989 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-9902174
14.
Phys Rev Lett ; 61(21): 2449-2452, 1988 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-10039121
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...