Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273445

RESUMEN

Limb muscle is responsible for physical activities and myogenic cell migration during embryogenesis is indispensable for limb muscle formation. Maternal obesity (MO) impairs prenatal skeletal muscle development, but the effects of MO on myogenic cell migration remain to be examined. C57BL/6 mice embryos were collected at E13.5. The GeoMx DSP platform was used to customize five regions along myogenic cell migration routes (myotome, dorsal/ventral limb, limb stroma, limb tip), and data were analyzed by GeomxTools 3.6.0. A total of 2224 genes were down-regulated in the MO group. The GO enrichment analysis showed that MO inhibited migration-related biological processes. The signaling pathways guiding myogenic migration such as hepatocyte growth factor signaling, fibroblast growth factor signaling, Wnt signaling and GTPase signaling were down-regulated in the MO E13.5 limb tip. Correspondingly, the expression levels of genes involved in myogenic cell migration, such as Pax3, Gab1, Pxn, Tln2 and Arpc, were decreased in the MO group, especially in the dorsal and ventral sides of the limb. Additionally, myogenic differentiation-related genes were down-regulated in the MO limb. MO impedes myogenic cell migration and differentiation in the embryonic limb, providing an explanation for the impairment of fetal muscle development and offspring muscle function due to MO.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Desarrollo de Músculos , Obesidad Materna , Animales , Movimiento Celular/genética , Ratones , Femenino , Desarrollo de Músculos/genética , Diferenciación Celular/genética , Embarazo , Obesidad Materna/metabolismo , Obesidad Materna/genética , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Desarrollo Embrionario/genética , Extremidades/embriología , Perfilación de la Expresión Génica , Transducción de Señal , Músculo Esquelético/metabolismo , Músculo Esquelético/embriología
2.
Thyroid ; 32(5): 581-593, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286177

RESUMEN

Background: Maternal exercise (ME) improves fetal and offspring muscle development, but mechanisms remain to be established. Since the thyroid hormone (TH) is critical for cell differentiation during embryonic development, we hypothesized that ME elevates TH receptor (THR) signaling in embryos, which promotes embryonic myogenesis. Methods: Female mice were exercised daily on a treadmill or received a daily TH, triiodothyronine (T3) injection. Embryos (embryonic day 12.5 [E12.5]) and P19 cells were used for studying effects of TH on embryonic myogenesis. TH levels in serum and embryos after ME or T3I were analyzed. Expression of TH signaling related genes and myogenic genes was assessed. THRα binding to the promoters of myogenic genes was investigated by chromatin immunoprecipitation-qantitative polymerase chain reaction (ChIP-qPCR). A CRISPR/CAS9 plasmid was utilized to knock out THRα in P19 cells. Results: ME elevated TH levels in both maternal circulation and embryos, which were correlated with enhanced TH signaling and myogenesis. At E12.5, both myogenic determinants (Pax3, Pax7) and myogenic regulatory factors (Myf5, Myod) were upregulated in ME embryos. ME increased THRα content and elevated messenger RNA (mRNA) expression of TH transporter Slc16a2 and deiodinase Dio2. In addition, the THRα binding to the promoters of Pax3/7 was increased. In P19 embryoid bodies, T3 promoted myogenic differentiation, which was abolished by ablating THRα. Furthermore, maternal daily injection of T3 at a level matching exercised mothers promoted embryonic myogenesis. Conclusions: ME promotes TH delivery to the embryos and enhances embryonic myogenesis, which is partially mediated by enhanced TH signaling in ME embryos.


Asunto(s)
Desarrollo de Músculos , Condicionamiento Físico Animal , Simportadores , Triyodotironina , Animales , Diferenciación Celular , Femenino , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Embarazo , Transducción de Señal , Simportadores/metabolismo , Triyodotironina/fisiología
3.
J Nutr Biochem ; 100: 108908, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801687

RESUMEN

Succinic acid widely exists in foods and is used as a food additive. Succinate not only serves as an energy substrate, but also induces protein succinylation. Histone succinylation activates gene transcription. The brown adipose tissue (BAT) is critical for prevention of obesity and metabolic dysfunction, and the fetal stage is pivotal for BAT development. Up to now, the role of maternal succinate supplementation on fetal BAT development and offspring BAT function remains unexamined. To test, female C57BL/6J mice (2-month-old) were separated into 2 groups, received with or without 0.5% succinic acid in drinking water during gestation and lactation. After weaning, female offspring were challenged with high fat diet (HFD) for 12 weeks. Newborn, female weanling, and HFD female offspring mice were analyzed. For neonatal and weaning mice, the BAT weight relative to the whole body weight was significantly increased in the succinate group. The expression of PGC-1α, a key transcription co-activator promoting mitochondrial biogenesis, was elevated in BAT of female neonatal and offspring born to succinate-fed dams. Consistently, maternal succinate supplementation enhanced thermogenesis and the expression of thermogenic genes in offspring BAT. Additionally, maternal succinate supplementation protected female offspring against HFD-induced obesity. Furthermore, in C3H10T1/2 cells, succinate supplementation promoted PGC-1α expression and brown adipogenesis. Mechanistically, succinate supplementation increased permissive histone succinylation and H3K4me3 modification in the Ppargc1a promoter, which correlated with the higher expression of Ppargc1a. In conclusion, maternal succinate supplementation during pregnancy and lactation enhanced fetal BAT development and offspring BAT thermogenesis, which prevented HFD-induced obesity and metabolism dysfunction in offspring.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo/embriología , Suplementos Dietéticos , Ácido Succínico/administración & dosificación , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Dieta Alta en Grasa , Femenino , Código de Histonas , Histonas/metabolismo , Lactancia , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Embarazo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA