Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 15(3): R59, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24647006

RESUMEN

BACKGROUND: The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. RESULTS: We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. CONCLUSIONS: In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied.


Asunto(s)
Mapeo Contig/métodos , Genoma de Planta , Pinus taeda/genética , Análisis de Secuencia de ADN/métodos , ADN de Plantas/genética , Haploidia
2.
Genetics ; 196(3): 891-909, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24653211

RESUMEN

The largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20-40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.), which comprises 20.1 Gb of sequence. The MAKER-P annotation pipeline combined evidence-based alignments and ab initio predictions to generate 50,172 gene models, of which 15,653 are classified as high confidence. Clustering these gene models with 13 other plant species resulted in 20,646 gene families, of which 1554 are predicted to be unique to conifers. Among the conifer gene families, 159 are composed exclusively of loblolly pine members. The gene models for loblolly pine have the highest median and mean intron lengths of 24 fully sequenced plant genomes. Conifer genomes are full of repetitive DNA, with the most significant contributions from long-terminal-repeat retrotransposons. In depth analysis of the tandem and interspersed repetitive content yielded a combined estimate of 82%.


Asunto(s)
Genoma de Planta , Anotación de Secuencia Molecular/métodos , Pinus taeda/genética , ADN de Plantas/análisis , Evolución Molecular , Genes de Plantas , Familia de Multigenes , Filogenia , Alineación de Secuencia
3.
PLoS One ; 8(9): e72439, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023741

RESUMEN

Despite their prevalence and importance, the genome sequences of loblolly pine, Norway spruce, and white spruce, three ecologically and economically important conifer species, are just becoming available to the research community. Following the completion of these large assemblies, annotation efforts will be undertaken to characterize the reference sequences. Accurate annotation of these ancient genomes would be aided by a comprehensive repeat library; however, few studies have generated enough sequence to fully evaluate and catalog their non-genic content. In this paper, two sets of loblolly pine genomic sequence, 103 previously assembled BACs and 90,954 newly sequenced and assembled fosmid scaffolds, were analyzed. Together, this sequence represents 280 Mbp (roughly 1% of the loblolly pine genome) and one of the most comprehensive studies of repetitive elements and genes in a gymnosperm species. A combination of homology and de novo methodologies were applied to identify both conserved and novel repeats. Similarity analysis estimated a repetitive content of 27% that included both full and partial elements. When combined with the de novo investigation, the estimate increased to almost 86%. Over 60% of the repetitive sequence consists of full or partial LTR (long terminal repeat) retrotransposons. Through de novo approaches, 6,270 novel, full-length transposable element families and 9,415 sub-families were identified. Among those 6,270 families, 82% were annotated as single-copy. Several of the novel, high-copy families are described here, with the largest, PtPiedmont, comprising 133 full-length copies. In addition to repeats, analysis of the coding region reported 23 full-length eukaryotic orthologous proteins (KOGS) and another 29 novel or orthologous genes. These discoveries, along with other genomic resources, will be used to annotate conifer genomes and address long-standing questions about gymnosperm evolution.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Genoma de Planta/genética , Pinus taeda/genética , Retroelementos/genética
4.
BMC Genomics ; 12: 247, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21595870

RESUMEN

BACKGROUND: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. RESULT: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with <30 or >250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. CONCLUSION: BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Clonación Molecular/métodos , Biblioteca Genómica , Hordeum/genética , Mapeo Físico de Cromosoma/métodos , Genoma de Planta/genética , Genotipo , Reproducibilidad de los Resultados
5.
PLoS One ; 3(7): e2532, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18596956

RESUMEN

BACKGROUND: Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. METHODOLOGY: Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. CONCLUSIONS: Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library.


Asunto(s)
Cromosomas Artificiales Bacterianos , Células Madre Embrionarias/citología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Células Madre Embrionarias/metabolismo , Marcadores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Transgénicos , Factores de Transcripción/metabolismo
6.
Nature ; 438(7069): 803-19, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16341006

RESUMEN

Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.


Asunto(s)
Perros/genética , Evolución Molecular , Genoma/genética , Genómica , Haplotipos/genética , Animales , Secuencia Conservada/genética , Enfermedades de los Perros/genética , Perros/clasificación , Femenino , Humanos , Hibridación Genética , Masculino , Ratones , Mutagénesis/genética , Polimorfismo de Nucleótido Simple/genética , Ratas , Elementos de Nucleótido Esparcido Corto/genética , Sintenía/genética
7.
Nature ; 437(7055): 88-93, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16136132

RESUMEN

We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma Humano , Genómica , Pan troglodytes/genética , Animales , Cromosomas de los Mamíferos/genética , Biología Computacional , Conversión Génica , Humanos , Especificidad de la Especie , Factores de Tiempo
8.
Genome Res ; 14(1): 179-87, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14672980

RESUMEN

Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, widespread utilization of a CGH has been limited by the lack of well characterized, high-resolution clone sets optimized for consistent performance in aCGH assays and specifically designed analytic software. We have assembled a set of approximately 4100 publicly available human bacterial artificial chromosome (BAC) clones evenly spaced at approximately 1-Mb resolution across the genome, which includes direct coverage of approximately 400 known cancer genes. This aCGH-optimized clone set was compiled from five existing sets, experimentally refined, and supplemented for higher resolution and enhancing mapping capabilities. This clone set is associated with a public online resource containing detailed clone mapping data, protocols for the construction and use of arrays, and a suite of analytical software tools designed specifically for aCGH analysis. These resources should greatly facilitate the use of aCGH in gene discovery.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Clonación Molecular/métodos , Genes Relacionados con las Neoplasias/genética , Genoma Humano , Hibridación de Ácido Nucleico/métodos , Línea Celular Tumoral , Mapeo Cromosómico/normas , ADN de Neoplasias/análisis , Dosificación de Gen , Humanos , Internet/tendencias , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Alineación de Secuencia/métodos , Programas Informáticos
9.
Genome Res ; 12(5): 673-8, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11997334

RESUMEN

The anticipated completion of two of the most biomedically relevant genomes, mouse and human, within the next three years provides an unparalleled opportunity for the large-scale exploration of genome evolution. Targeted sequencing of genomic regions in a panel of primate species and comparison to reference genomes will provide critical insight into the nature of single-base pair variation, mechanisms of chromosomal rearrangement, patterns of selection, and species adaptation. Although not recognized as model "genetic organisms" because of their longevity and low fecundity, 30 of the approximately 300 primate species are targets of biomedical research. The existence of a human reference sequence and genomic primate BAC libraries greatly facilitates the recovery of genes/genomic regions of high biological interest because of an estimated maximum neutral nucleotide sequence divergence of 25%. Primate species, therefore, may be regarded as the ideal model "genomic organisms". Based on existing BAC library resources, we propose the construction of a panel of primate BAC libraries from phylogenetic anchor species for the purpose of comparative medicine as well as studies of genome evolution.


Asunto(s)
Evolución Molecular , Genoma , Biblioteca Genómica , Primates/genética , Investigación , Animales , Humanos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...