Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(2): 021801, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867467

RESUMEN

We report the first results of a search for leptophobic dark matter (DM) from the Coherent-CAPTAIN-Mills (CCM) liquid argon (LAr) detector. An engineering run with 120 photomultiplier tubes (PMTs) and 17.9×10^{20} protons on target (POT) was performed in fall 2019 to study the characteristics of the CCM detector. The operation of this 10-ton detector was strictly light based with a threshold of 50 keV and used coherent elastic scattering off argon nuclei to detect DM. Despite only 1.5 months of accumulated luminosity, contaminated LAr, and nonoptimized shielding, CCM's first engineering run has already achieved sensitivity to previously unexplored parameter space of light dark matter models with a baryonic vector portal. With an expected background of 115 005 events, we observe 115 005+16.5 events which is compatible with background expectations. For a benchmark mediator-to-DM mass ratio of m_{V_{B}}/m_{χ}=2.1, DM masses within the range 9 MeV≲m_{χ}≲50 MeV are excluded at 90% C. L. in the leptophobic model after applying the Feldman-Cousins test statistic. CCM's upgraded run with 200 PMTs, filtered LAr, improved shielding, and 10 times more POT will be able to exclude the remaining thermal relic density parameter space of this model, as well as probe new parameter space of other leptophobic DM models.

2.
Phys Rev Lett ; 118(22): 221803, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621993

RESUMEN

The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...